Background: Aberrant mRNA splicing is a well-established pathogenic mechanism for human disease, but its real impact is hardly predictable and underestimated. Splicing can be therefore modulated for therapeutic purposes, and splicing-switching molecules are in clinics for some diseases. Here, conscious that over 10% of all pathogenic mutations occurs at 5’ss, we aimed at characterizing and rescuing nine 5’ss mutations in three models of defective F8 exons whose skipping would lead to factor VIII (FVIII) deficiency (Hemophilia A), the most frequent coagulation factor disorder. Methods: HEK293T cells were transfected with F8 minigene variants, alone or with engineered U1 small nuclear RNAs (U1snRNAs), and splicing patterns analysed via RT-PCR. Results: All 5’ss mutations induced exon skipping, and the proportion of correct transcripts, not predictable by computational analysis, was consistent with residual FVIII levels in patients. For each exon we identified a unique engineered U1snRNAs, either compensatory or Exon Specific (ExSpeU1), able to rescue all mutations. Overall, ExSpeU1s were more effective than compensatory U1snRNAs, particularly in the defective exons 6 and 22. Conclusions: Data highlight the importance of splicing assays to elucidate genotype-phenotype relationships and proved the correction efficacy of ExSpeU1s for each targeted defective F8 exon, thus expanding their translational potential for HA.
Rescue of a panel of Hemophilia A-causing 5’ss splicing mutations by unique Exon-specific U1snRNA variants
Peretto, LauraPrimo
;D'angiolillo, ClaudiaSecondo
;Ferraresi, Paolo;Balestra, Dario
Penultimo
;Pinotti, MirkoUltimo
2025
Abstract
Background: Aberrant mRNA splicing is a well-established pathogenic mechanism for human disease, but its real impact is hardly predictable and underestimated. Splicing can be therefore modulated for therapeutic purposes, and splicing-switching molecules are in clinics for some diseases. Here, conscious that over 10% of all pathogenic mutations occurs at 5’ss, we aimed at characterizing and rescuing nine 5’ss mutations in three models of defective F8 exons whose skipping would lead to factor VIII (FVIII) deficiency (Hemophilia A), the most frequent coagulation factor disorder. Methods: HEK293T cells were transfected with F8 minigene variants, alone or with engineered U1 small nuclear RNAs (U1snRNAs), and splicing patterns analysed via RT-PCR. Results: All 5’ss mutations induced exon skipping, and the proportion of correct transcripts, not predictable by computational analysis, was consistent with residual FVIII levels in patients. For each exon we identified a unique engineered U1snRNAs, either compensatory or Exon Specific (ExSpeU1), able to rescue all mutations. Overall, ExSpeU1s were more effective than compensatory U1snRNAs, particularly in the defective exons 6 and 22. Conclusions: Data highlight the importance of splicing assays to elucidate genotype-phenotype relationships and proved the correction efficacy of ExSpeU1s for each targeted defective F8 exon, thus expanding their translational potential for HA.| File | Dimensione | Formato | |
|---|---|---|---|
|
s10020-025-01176-8.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


