Although many potential applications in early clinical diagnosis have been proposed, the use of a surface plasmon resonance imaging (SPRI) technique for non-invasive prenatal diagnostic approaches based on maternal blood analysis is confined. Here, we report a nanoparticle-enhanced SPRI strategy for a non-invasive prenatal fetal sex determination based on the detection of a Y-chromosome specific sequence (single-gene SRY) in cell-free fetal DNA from maternal plasma. The SPR assay proposed here allows for detection of male DNA in mixtures of 2.5 aM male and female genomic DNAs with no preliminary amplification of the DNA target sequence, thus establishing an analytical protocol that does not require costly, time-consuming, and prone to sample contamination PCR-based procedures. Afterward, the developed protocol was successfully applied to reveal male cell-free fetal DNA in the plasma of pregnant women at different gestational ages, including early gestational ages. This approach would pave the way for the establishment of faster and cost-effective non-invasive prenatal testing.

Nanoparticle-Enhanced Surface Plasmon Resonance Imaging Enables the Ultrasensitive Detection of Non-Amplified Cell-Free Fetal DNA for Non-Invasive Prenatal Testing

Breveglieri G.;Borgatti M.;Gambari R.
Penultimo
;
2022

Abstract

Although many potential applications in early clinical diagnosis have been proposed, the use of a surface plasmon resonance imaging (SPRI) technique for non-invasive prenatal diagnostic approaches based on maternal blood analysis is confined. Here, we report a nanoparticle-enhanced SPRI strategy for a non-invasive prenatal fetal sex determination based on the detection of a Y-chromosome specific sequence (single-gene SRY) in cell-free fetal DNA from maternal plasma. The SPR assay proposed here allows for detection of male DNA in mixtures of 2.5 aM male and female genomic DNAs with no preliminary amplification of the DNA target sequence, thus establishing an analytical protocol that does not require costly, time-consuming, and prone to sample contamination PCR-based procedures. Afterward, the developed protocol was successfully applied to reveal male cell-free fetal DNA in the plasma of pregnant women at different gestational ages, including early gestational ages. This approach would pave the way for the establishment of faster and cost-effective non-invasive prenatal testing.
2022
Calcagno, M.; D'Agata, R.; Breveglieri, G.; Borgatti, M.; Bellassai, N.; Gambari, R.; Spoto, G.
File in questo prodotto:
File Dimensione Formato  
acs.analchem.1c04196.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2479568
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact