In this paper, we give an explicit new formulation for the three-dimensional mode I weight function of Oore-Burns in the case where the crack border agrees with a star domain. Analysis in the complex field allows us to establish the asymptotic behaviour of the Riemann sums of the Oore-Burns integral in terms of the Fourier expansion of the crack border. The new approach gives remarkable accuracy in the computation of the Oore-Burns integral with the advantage of reducing the size of the mesh. Furthermore, the asymptotic behaviour of the stress intensity factor at the tip of an elliptical crack subjected to uniform tensile stress is carefully evaluated. The obtained analytical equation shows that the error of the Oore-Burns integral tends to zero when the ratio between the ellipse axes tends to zero as further confirmation of its goodness of fit.

An approximation in closed form for the integral of Oore-Burns for cracks similar to a star domain

Livieri, P.
Primo
;
Segala, F.
Ultimo
2018

Abstract

In this paper, we give an explicit new formulation for the three-dimensional mode I weight function of Oore-Burns in the case where the crack border agrees with a star domain. Analysis in the complex field allows us to establish the asymptotic behaviour of the Riemann sums of the Oore-Burns integral in terms of the Fourier expansion of the crack border. The new approach gives remarkable accuracy in the computation of the Oore-Burns integral with the advantage of reducing the size of the mesh. Furthermore, the asymptotic behaviour of the stress intensity factor at the tip of an elliptical crack subjected to uniform tensile stress is carefully evaluated. The obtained analytical equation shows that the error of the Oore-Burns integral tends to zero when the ratio between the ellipse axes tends to zero as further confirmation of its goodness of fit.
2018
Livieri, P.; Segala, F.
File in questo prodotto:
File Dimensione Formato  
livieri2017.pdf

accesso aperto

Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri
ffe.12629.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11392_2381917_PRE_Livieri.pdf

accesso aperto

Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 216.62 kB
Formato Adobe PDF
216.62 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2381917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact