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ABSTRACT In this paper, we give an explicit new formulation for the three-dimensional mode I
weight function of Oore–Burns in the case where the crack border agrees with a star
domain. Analysis in the complex field allows us to establish the asymptotic behaviour
of the Riemann sums of the Oore–Burns integral in terms of the Fourier expansion of
the crack border. The new approach gives remarkable accuracy in the computation of
the Oore–Burns integral with the advantage of reducing the size of the mesh.
Furthermore, the asymptotic behaviour of the stress intensity factor at the tip of an
elliptical crack subjected to uniform tensile stress is carefully evaluated. The obtained
analytical equation shows that the error of the Oore–Burns integral tends to zero when
the ratio between the ellipse axes tends to zero as further confirmation of its goodness
of fit.

Keywords 3D weigh function; fracture mechanics; stress intensity factor.

NOMENCLATURE a,b = dimensionless semi-axis of an elliptical crack
a; b = actual semi-axis of an elliptical crack
e = eccentricity of ellipse
kI = mode I stress intensity factor for a dimensionless domain

u , v = auxiliary dimensionless coordinate system
x , y = dimensionless Cartesian coordinate system
x; y = actual Cartesian coordinate system
E(e) = elliptical integral of second kind
KI2 = Taylor expansion up to second order of KI for an ellipse
K(e) = elliptical integral of first kind
KI = mode I stress intensity factor

KIrw = mode I stress intensity factor from Irwin’s equation
Q = point of Ω
Q’ = point of crack border
δ = size of mesh over crack
Δ = distance between Q and ∂Ω
σn = nominal tensile stress in x; y actual Cartesian coordinate system
σ = nominal tensile stress in x; y dimensionless Cartesian coordinate system
Ω = crack shape
∂Ω = crack border

INTRODUCT ION

The advantages of the use of weight functions for the
assessment of stress intensity factors (SIFs) are well

known in the literature, especially when many loads act
on the component. For each geometry, we have to
estimate the correct weight function related to the
location where the crack nucleates and then propagates
under fatigue loading. For a correct evaluation of the
SIF, the proper weight function should be calculated;Correspondence: P. Livieri. E-mail: paolo.livieri@unife.it
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however, accurate results can be obtained by
generalising the weight function derived from the
displacement function of Petroski and Achenbach.1,2

On the basis of the procedure developed by Glinka
and Shen,1 by means of finite element analysis, we can
obtain the parameter that appears as unknown in the
generalised weight function proposed by Sha and Yang.2

Applications to semi-elliptical cracks3–5 or corner
cracks6 are present in the literature and show the
efficiency in the evaluation of the SIF with error in the
order of a few per cent with respect to the finite element
results.

For a crack with an irregular shape, the calculation of
the SIF is more complex and requires more effort. In
fact, in order to evaluate the fatigue limit for materials
with small notches or defects under mode I loading,
Murakami and Endo7 considered an average value of
the SIF obtained from convex flaws. Murakami8

suggested a shape factor, referred to as the square root
of the area, about 0.5 for an engineering estimation of
the maximum SIF for an arbitrarily 3D internal crack
or 0.65 for an arbitrarily 3D surface crack.9

Some analytical weight functions available in the
literature are able to relate the SIF at each point of an
embedded planar two-dimensional crack subjected to
mode I loading10–14 or under mixed mode loading.15,16

The Oore-Burns12 weight function displays a simple
analytic form and gives an exact result in the special
cases of penny-shaped cracks or tunnel cracks.
Furthermore, this weight function can be used for
surface cracks after the introduction of proper
coefficients inferred from classical analysis of a surface
elliptical crack such as Normal-Rauj equations (see for
instance refinements).17,18 Obviously, the effect of
vertex singularities is not taken into account because
accurate studies are needed.19,20 By means of the
Oore–Burns weight, an engineering answer will be
given without being too time consuming.17,18 In this
way, for example, the stress can be evaluated along the
front crack for the estimation of the fatigue safety
factor.21–23

Despite its very compact analytical expression, the
numerical evaluation of the Oore–Burns integral
(hereinafter, OB integral) is very difficult, due to the
singular nature of the weight function, and special
integration techniques are required as indicated by
Desjardins et al.24 and S. R. Montenegro et al.25

For the special case of ellipse cracks, the authors
obtained a careful closed-form representation of the
OB integral along elliptic cracks under general pressure
from previous papers. More precisely, they found a
closed expression of the second-order Taylor expansion
of the SIFs with respect to deviation of the ellipse from
the disc for a generic tensile stress over the crack.26 The T
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deviation of an ellipse from the disc is quantitatively
described by the parameter ε = 1 � b/a, where a and b
are the major and minor semi-axes respectively. The
exact evaluation of the OB integral by means of an
explicit quadrature formula with a polar integration grid
was also considered by the authors in Ref. 27. Our
approach drastically reduces the computational time to
evaluate the OB integral because a very coarse mesh is
sufficient without loss of accuracy. This was made
possible by theoretical evaluation of the coefficient of
δ1/2 in the deviation between the integral and its Riemann
sum (δ is the size of the mesh over the crack).

We will show that the convergence is extremely fast
(Tables 2 & 3). The aim of this paper is to permanently
optimize the previous algorithm and to extend it to a
general equation for irregular inner cracks like to a star
domain (and hence every convex crack). The equation is
derived from the Oore–Burns weight function by means
of complex analysis. The coefficient of δ1/2 in the
expansion of the Riemann sum of Oore–Burns was
evaluated with an accuracy never previously achieved,
and this is new with respect to our previous papers, in
particular Ref. 27. Furthermore, in the case of elliptical
cracks under uniform tensile loading, the gap between

Table 2 Comparison with Irwin exact solution as a function of mesh refinements for an ellipse (σn and σ are the uniform tensile stresses, b is
the minor semi-axis of the ellipse, a is the maximum semi-axis of the ellipse, and Mδ = π)

M b=a
θ

[deg] δ
Irwin28

KIrw

σn
ffiffiffi
a

p
From Eq. (29) kI

σ

e% per cent error compared
with Irwin28 solution [%]

100 0.8 0° 0.031416 0.999915 1.01379 1.39
200 0.8 0° 0.015708 0.999915 1.01312 1.32
400 0.8 0° 0.007854 0.999915 1.01280 1.29
800 0.8 0° 0.003927 0.999915 1.01268 1.28
1600 0.8 0° 0.001963 0.999915 1.01264 1.27
100 0.8 45° 0.031416 1.063829 1.06374 0.01
200 0.8 45° 0.015708 1.063829 1.06326 0.05
400 0.8 45° 0.007854 1.063829 1.06305 0.07
800 0.8 45° 0.003927 1.063829 1.06296 0.08
1600 0.8 45° 0.001963 1.063829 1.06293 0.08
100 0.8 90° 0.031416 1.117939 1.10756 0.93
200 0.8 90° 0.015708 1.117939 1.10715 0.97
400 0.8 90° 0.007854 1.117939 1.10697 0.98
800 0.8 90° 0.003927 1.117939 1.10690 0.99
1600 0.8 90° 0.001963 1.117939 1.10688 0.99

Table 3 Comparison with Irwin exact solution as a function of mesh refinements for an ellipse (σn and σ are the uniform tensile stresses, b is
the minor semi-axis of the ellipse, a is the maximum semi-axis of the ellipse, and Mδ = π)

M b=a
θ

[deg] δ
Irwin28

KIrw

σn
ffiffiffi
a

p
From Eq. (29) kI

σ

e% per cent error compared
with Irwin28 solution [%]

100 0.6 0° 0.031416 0.833214 0.86411 3.71
200 0.6 0° 0.015708 0.833214 0.86290 3.56
400 0.6 0° 0.007854 0.833214 0.86234 3.50
800 0.6 0° 0.003927 0.833214 0.86215 3.47
1600 0.6 0° 0.001963 0.833214 0.86207 3.46
100 0.6 45° 0.031416 0.976805 0.97406 0.28
200 0.6 45° 0.015708 0.976805 0.97343 0.35
400 0.6 45° 0.007854 0.976805 0.97322 0.37
800 0.6 45° 0.003927 0.976805 0.97313 0.38
1600 0.6 45° 0.001963 0.976805 0.97310 0.38
100 0.6 90° 0.031416 1.075674 1.05510 1.91
200 0.6 90° 0.015708 1.075674 1.05474 1.95
400 0.6 90° 0.007854 1.075674 1.05458 1.96
800 0.6 90° 0.003927 1.075674 1.05454 1.97
1600 0.6 90° 0.001963 1.075674 1.05452 1.97
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the OB integral and the Irwin analytic solution is
discussed. Finally, a comparison of the SIFs between
the proposed equations and those taken from the
literature will show the validity of the solution.

BACKGROUND

The SIFs of the mode I loading of a planar crackΩ in a
three-dimensional body can be made by means of the
Oore–Burns12 relationship that agrees with the known
results when the crack takes a special configuration such
as a disc or a tunnel crack.

Let Ω be an open bounded simply connected subset of
the plane and

f Qð Þ ¼ ∫
∂Ω

ds
Q� P sð Þj j2

; Q∈Ω (1)

where s is the arch-length on ∂Ω and P(s) describes ∂Ω.
Oore and Burns proposed the following expression for
the mode I SIF at every pointQ’∈ ∂Ω when the crack is
subjected to a nominal tensile loading sn(Q):

KI Q’
� �

¼
ffiffiffi
2

p

π
∫
Ω

σn Qð Þh Qð Þ
Q� Q’
��� ���2 dΩ ; Q’∈∂Ω (2)

where

h Qð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
f Qð Þp (3)

Under reasonable conditions on the nominal stress σn
(Q), the integral (2) is convergent (see for instance Ref.
29).

APPROX IMAT ION FORMULA

From now on, we will assume that the boundary of the
crack is locally a graph of a C1 function. In order to
simplify the analytical formulation of KI, it is convenient
to consider a dimensionless domain obtained by means of
a linear isotropic dilatation. The actual crack will be
distinguished by means of an upper line bar, so that Ω
is the initial crack and Ω is the dimensionless reference
domain. We take Ω as a reference domain in such a way
that the maximum diameter of Ω is equal to 2. We
are able to reconstruct the SIF KI for the actual domain
Ω (which is a dilation of a domain Ω) from the identity

Ω ¼ λΩ. The relation between KI and the SIF evaluated
for a dimensionless domain kI is given by

KI Q0
; σn Q
� �� � ¼

ffiffiffi
λ

p
kI Q

0
; σn λQð Þ

� �
(4)

where the meaning of the notation is clear and σn is the
nominal tensile stress evaluated without the presence of
the crack being the actual domain Ω (Fig. 1). Note that
λ is a scalar quantity that has a physical dimension equal
to a length, whereas the physical dimension of k1 is a
pressure.

We fix an orthogonal Cartesian reference x,y of which
the origin is, for example, the centre of mass of Ω. Every
point Q0 on ∂Ω will be identified by its distance in terms
of arc length from a fixed point Q0

0 on the boundary. We
introduce a new orthogonal Cartesian reference (u,v)
centred in Q0 by following Fig. 2. A point Q can be
represented in the forms x � e1 + y � e2 and u � k1 + v � k2,
where e1, e2, k1 and k2 are the versors of the axes x,y,u,v.
We considered the polar mesh given by the points

Qj;k ¼ kδ k1 cos jδþ k2 cos jδð Þ (5)

with δ the small submultiple of π/2 and

k≥0; 0≤ j≤2M � 1; Mδ ¼ π (6)

On the boundary ∂Ω, we introduce a discretisation of
size τ = L/[L/δ], where L is the length of ∂Ω and [] means
the integer part. We denote by Pmjk the point of ∂Ω of
which the distance (in terms of arc length) from the

Fig. 1 Planar irregular crack.
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projection of Qjk on ∂Ω is m � τ. Obviously, m runs on the
range

0≤m≤
L
π
M

� 	
� 1 (7)

By refining the techniques developed in previous
work,27 we are able to establish an ultimate convergence
formula for the integral (2). In order to lighten the
notation, we put

Ajk ¼ ∑ Qjk � Pmjk
�� ���2

� ��1=2
(8)

where the sum is on the index m in its natural range (7),

I ¼ ∫
π
0

ffiffiffiffiffiffiffiffiffiffiffiffi
sinϑ

p
dϑ (9)

J ¼ ∫
1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ th πϑð Þ

p
dϑ (10)

F ¼ ∫
1
0

ffiffiffiffiffi
ϑ

p
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

th πϑð Þp� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ϑ2

p dϑ (11)

H ¼ ∫
∞
0

ffiffiffiffiffi
ϑ

p
e�2 πϑdϑ (12)

C ¼ �
ffiffiffi
2

p

π3=2
I ζ 1=2ð Þ

þ 2
ffiffiffi
2

p

π3=2
F þ π2

6
� 1


 �
2
3
� J


 �� 	
þ

ffiffiffiffiffiffi
2π

p

3
H (13)

In Eq. (13), ζ represents the zeta Riemann function.
Then, the approximation formula is the following:

kI Q’
� �

¼
ffiffiffi
2

p

π
∑
jk

Ajk

k
σ Qjk

� �
þ C σ Q’

� �" # ffiffiffi
δ

p
þ O δð Þ

(14)

The sum on the right-hand side (r.h.s.) of Eq. (14) is
on the indexes jk for which Qik∈Ω. By inserting a
numerical value, we obtain

C ¼ 0:932854… (15)

(see Ref. [27]). The proof of Eq. (14) is based on some
proprieties of the ζ function, Riemann sums, the Stone-
Weierstrass theorem and the identity

∑
þ∞

�∞

1
a2 þ n2

¼ π
a

1
th π að Þ ; a≠0 (16)

In order to greatly save computation time, in our
simulations, we choose the discretisation on the
boundary of Ω in such a way that the starting point is Q0

(i.e. fixed) and Pm is the point with the coordinate of mτ.
This choice implies a slight correction of the coefficient

Fig. 2 (a) Actual crack and (b) dimensionless crack integration domain with semi diameter equal to unity with the mesh for numerical
computation. [Colour figure can be viewed at wileyonlinelibrary.com]
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C in Eq. (13). The very delicate analysis is performed in
the Appendix, of which we show that the correction is
about �5.35 � 10�3. More precisely, Eq. (14) becomes

kI Q’
� �

≈

ffiffiffi
2

p

π
∑
jk

Ajk

k
σ Qjk

� �
þ 0:927 σ Q’

� �" # ffiffiffi
δ

p

(17)

Remark 1

In terms of dimensional consistency, by calling δr, δθ and
δs the size of the partitions on R2 × ∂Ω, Eq. (17) is written
as follows:

kI Q’
� �

≈

ffiffiffi
2

p

π
δϑffiffiffiffi
δs

p ∑
Ajk

k
σ Qjk

� �

þ 0:889
ffiffiffiffi
δr

p
þ 0:038

δ3=2s

δr

 !
σ Q’
� �

(18)

TEST ON THE UN ITARY D ISC

We test Eq. (17) on the unit disc of Fig. 3, in the case of
uniform tensile stress σ. The fixed starting point on ∂Ω is
Po = e1, that is, Pm = cos (mδ) � e1 + sin (mδ) � e2. The
condition Qjk∈Ω becomes

1≤ j≤M � 1; 1≤k <
2
δ
sin jδð Þ (19)

and from Eq. (7)

0≤m≤2M � 1 (20)

Table 1 shows the accuracy of Eq. (17) in the
prediction of the SIF. The theoretical value is equal to
1.275, as evaluated by Irwin28 under uniform nominal
stress σ. The theoretical expectation is completely
satisfied also with a rough mesh. The value of C reported
in Table 1 is the value obtained by means of the
Richardson extrapolation from the result of the only
Riemann sum. When the mesh is very accurate
(M = 6400), the numerical prediction of C agrees with
the theoretical one reported in Eq. (17). This is
confirmation that this work permanently improves every
other study on the subject.

UNITARY ELL IPT ICAL CRACKS

In this section, we assume that Ω is a dimensionless

ellipse contour x2
a2 þ y2

b2
≤1 with 0< b≤ a = 1. The natural

description of ∂Ω is given in terms of the angle θ related
to Cartesian coordinates x,y by x = a � cos θ, y = b sin θ
(Fig. 4). By Q0, we mean the point (a � cos α) e1 + (b � sin α)
e2. In this case, the link between x,y and u,v is given by

u ¼ 1
g

�a sinαxþ b cos αyþ a2 e2

2
sin2α


 �
(21)

v ¼ 1
g

�b cos αx� a sinαyþ abð Þ (22)

x ¼ 1
g

�a sinαu� b cos αvþ ag cos2α
� �

(23)

Fig. 3 Reference coordinate system for the calculation of kI in point
Q0 in the case of a dimensionless unit circular crack.

Fig. 4 Reference coordinate system for the calculation case of a
dimensionless unit elliptical crack.
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y ¼ 1
g

b cosαu� a sin αvþ bg sinα
� �

(24)

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

q
is the eccentricity of the ellipse and

g ¼ g αð Þ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 cos2α

p
(25)

Fixed e is denoted by E(ϕ), which is the complete
elliptic integral of the second kind. Moreover, let

ϑm ¼ E�1 mδþ E
π
2

� �� �
� π

2
(26)

Pm ¼ a cos αþ ϑmð Þ e1 þ b sin αþ ϑmð Þ e2 (27)

Cjk ¼ ∑
2N�1

0
Qjk � Pm
�� ���2


 ��1=2

(28)

By applying Eq. (17), it follows

kI≈
ffiffiffi
2

p

π
∑

Cjk

k
σ Qjk

� �
þ 0:927 σ Q’

� �" # ffiffiffi
δ

p
(29)

Tables 2 and 3 show that the approximation (29) is
absolutely confirmed. Obviously, when the b/a decreases,
the per cent error increases due to the nature of the OB
integral.12,24,30

We may speed up Eq. (29) (at least by a factor of 10)
by choosing the mesh on ∂Ω in terms of the angle ϑ,
rather than length s. The reason is to avoid the amplitude
function E�1 which slows down the program heavily.
Therefore, let

Pm ¼ a cos αþmδð Þ e1 þ b sin αþmδð Þ e2 (30)

C�
jk ¼ ∑

2M�1

0
Qjk � Pm
�� ���2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 cos2 αþmδð Þ

q
 ��1=2

(31)

E ¼ 0:889

þ 0:038 1� e2 cos2α
� �3=4

cos
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2 cos2 α
p

 �

(32)

Equation (29) is amended as follows:

kI ¼
ffiffiffi
2

p

π
∑

C�
jk

k
σ Qjk

� �
þ E 1� e2Gcos2 α

� �
σ Q’
� �" # ffiffiffi

δ
p

þO δð Þ (33)

where G = G(α, e) is a bounded function and 0 ≤ e2

G ≤ 0.02. By reading Qik and Pm in the reference (u,v),
we have Qjk, given by Eq. (5) and

Pm ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 cos2 αð Þ

p sin mδð Þ � e2 cosα sin αþmδð Þð�
� sin αð Þ Þ �k1 þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2 cos2 αð Þ
p

1� cos mδð Þ½ �k2 (34)

We clarify the condition Qjk∈Ω in the sum on the r.h.s.
of Eq. (33). By Eqs (23) and (24), the request is
equivalent to

1≤ j≤M � 1 (35)

We may speed up Eqs (29) and (33) by a standard
extrapolation argument. The conclusion is

kI Q’
� �

¼ 2S
δ
2


 �
� S δð Þ þ

ffiffiffi
2

p
� 1

� �
Eσ Q’
� � ffiffiffi

δ
p

þO δ3=2
� � (37)

where S(δ) represents the Riemann sum

S δð Þ ¼
ffiffiffiffiffiffi
2δ

p

π
∑

Cjk

k
σ Qjk

� �
(38)

Table 4 reports a comparison with Irwin’s exact
solution and Eq. (33) as function of the a/b ratio. The

1 ≤k <
4
δ

a2 sin2 αþ b2 cos2 α
� �3=2

ab sin jδð Þ
2a2b2 cos2 jδð Þ þ 2 a4sin2 αþ b4 cos αð Þ� �

sin2 j δð Þ � ab a2 � b2
� �

sin 2αð Þ sin 2 jδð Þ (36)
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difference between the results obtained in Tables 3 and 4
is very small. Furthermore, the same table reports the
calculation of the approximation KI2 of KI obtained by
means of a second-order approximation of the OB
integral proposed in explicit form in Ref. [26]. The
conclusion is that Eq. (29) has an essentially theoretical
value. The equations that are really useful from an
operational point of view are Eqs (33) and (37).

Now, we conclude this section with the analysis of the
accuracy in the OB integral prediction in the classic case
of an elliptical crack under uniform tensile loading.

As is well known, when b tends toward zero, the SIF at
the notch tip radius tends to have a gap between the
classical Irwin solution. In fact, for b/a equal to 0.2, Oore
and Burns obtained a per cent error around 17%,
whereas Desjardins et al.,24 by means of an optimized
numerical solution, calculated a value of 18.4%.
Equation (33) gives a value of 17.5% with M = 3200.
Montenegro et al.,25 under the hypothesis that the error
depends on the ellipse aspect ratio and on the local crack
front curvature, introduced the corrective function fc for
the OB integral. On the other hand, in a previous
paper,30 the authors showed that, when an elliptical crack
is assumed under uniform tensile loading, the OB
integral gives a first-order approximation of SIF along
the whole crack front, very close to the first order
approximation of KIrw, Irwin’s exact solution. In
particular, when the eccentricity e of the ellipse tends to
zero, the principal contribution e2

20
ffiffi
π

p to the discrepancy
is very small. However, Irwin’s theoretical equation at
the notch tip gives a value of the SIF that tends to zero

when b/a → 0. So that a more realistic comparison
between the OB integral and the Irwin equation should
be made on the basis of a weighted error of the type:
(KI�KIrw)/KIrw , max, where KIrw,max is the maximum
value of SIF for the crack with ratio b/a.

In order to evaluate the weighted error, we conclude
this section by examining the asymptotic behaviour of
the OB integral when b/a → 0. For simplicity, it was
assumed that a = 1. For uniform pressure σ = 1, the
well-known result of Irwin is given by

I αð Þ ¼
ffiffiffiffiffiffi
π b

p

E eð Þ sin2 αþ b2 cos2 α
� �1=4

(39)

Therefore, for fixed α∈]0,π/2[, one has

I αð Þ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π sin αb

p
; b→0 (40)

and

I 0ð Þ≈
ffiffiffiffiffiffiffi
π b

p
; b→0 (41)

In view to find the behaviour of the OB integral for
b → 0, we need a preliminary estimate. By referring to
Fig. 5, we put

Δ ¼ distance Q; ∂Ωð Þ (42)

Q� ¼ projection ofQ on ∂Ω (43)

Then, by Carnot

Q� P sð Þj j2 ¼ Δ2 þ Q� � P sð Þj j2
� 2Δ Q� � P sð Þj j cos ωð Þ (44)

Table 4 Comparison with Irwin exact solution as a function of
mesh refinements for an ellipse (σn and σ are the uniform tensile
stresses, b is the minor semi-axis of the ellipse, and a is the
maximum semi-axis of the ellipse)

b=a
θ

[deg]

Irwin28

KIrw

σn
ffiffiffi
a

p From Eq. (33)
(M = 800) kI

σ

From Ref.26

KI2

σn
ffiffiffi
a

p

0.9 0° 1.068 1.076 1.074
0.8 0° 1.000 1.014 1.014
0.7 0° 0.922 0.943 0.947
0.6 0° 0.833 0.863 0.874
0.5 0° 0.732 0.770 0.794
0.9 45° 1.098 1.099 1.099
0.8 45° 1.064 1.064 1.064
0.7 45° 1.024 1.023 1.026
0.6 45° 0.977 0.974 0.984
0.5 45° 0.920 0.915 0.938
0.9 90° 1.126 1.120 1.121
0.8 90° 1.118 1.107 1.109
0.7 90° 1.102 1.086 1.093
0.6 90° 1.076 1.055 1.073
0.5 90° 1.035 1.010 1.048

Fig. 5 Application to the Carnot theorem.
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On convex sets, ω < π/2. We consider Q* the origin
on ∂Ω, and so in terms of arc length, the coordinate of
�Q* is �L ≡ L, 2L being the length of the ellipse. By
taking into account |Q*�P (s)|≤ s, from Eq. (44), it
follows that

Q� P sð Þj j2 ¼ Δ2 þ s2 (45)

and then

f Qð Þ≥ π
Δ

1� b
π


 �
(46)

h Qð Þ≤
ffiffiffiffi
Δ

pffiffiffi
π

p 1þO bð Þð Þ≈
ffiffiffiffi
Δ

pffiffiffi
π

p ; b→0 (47)

When α≠ 0, we consider, for example, α = π/2. Then,
by Fig. 6, the asymptotic behaviour of Oore–Burns is
given by the model

kI ¼
ffiffiffi
2

p

π
1ffiffiffi
π

p 1ffiffiffiffiffiffi
2b

p ∫
X

ffiffiyp ffiffiffiffiffiffiffiffiffiffiffiffiffi
2b� y

p
x2 þ y2

dxdy

¼
ffiffiffiffiffiffi
π b

p
þ O b3=2

� �
(48)

In a similar way, it is not difficult to verify that for
α≠ 0, the asymptotic behaviour of Irwin and
Oore-Burns agrees. The problem is for α = 0. By putting
c ¼ 1

2b2
, the model for Oore–Burns is given by

kI ¼
ffiffiffi
2

p

π
∫
Y

h
x2 þ y2

dxdy (49)

where Y is the set in Fig. 7a.
We divide region Y in four parts, by Fig. 7b. On

regions Y1 and Y2, we make use of the estimate

Δ≤x� c y2 (50)

while on regions Y3 and Y4, we make use of the estimate

Δ≤
1ffiffi
c

p ffiffiffi
x

p � ffiffi
c

p
yj j� �

(51)

Fig. 6 Model of domain integration for the asymptotic behaviour of
Oore–Burns integral. [Colour figure can be viewed at
wileyonlinelibrary.com]

Fig. 7 (a) Domain integration for the asymptotic behaviour of Oore–Burns integral; (b) partition of the domain integration for the asymptotic
behaviour of Oore–Burns integral. [Colour figure can be viewed at wileyonlinelibrary.com]
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We illustrate, for example, the contribution coming
from region Y2. By Eqs (47), (49) and (50), we have to
bind the integral

kY2 ¼ 2
ffiffiffi
2

p

π3=2
∫
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� cy2

p
x2 þ y2

dxdy (52)

By changing coordinates x ¼ z
c tan2ϑ ; y ¼ z

c tanϑ, we may
compute kY2. Precisely

kY2 ¼ b ln2ffiffiffi
π

p (53)

By taking the overall contributions into account, the
OB integral for small b is bound by

A much more refined analysis of the function Δ allows
us to improve the estimation (54) up to

kI ≤2:90 b (55)

In virtue of Eq. (55), the weighted percentage of the
error of Oore–Burns with respect to Irwin KIrw (much
more significant than a simple percentage) is then
bound by

KI � KIrw

KIrw;max
≤0:63

ffiffi
b

p
; b→0 (56)

That is the weighed percentage →0 for b → 0. The
estimate (56) is presumably optimal and shows an
excellent agreement with numerical simulations as
reported in Fig. 8. When b ~ 1, the weighted percentage
error ~ ε

20 1þ 9
16 ε

� �
with ε = 1� b (see Ref. [30]).

Finally, in this section, we make the comparison
between Eq. (33) and the results of Irwin’s equation. By
calling I2, the Taylor expansion of the second order of
the Irwin SIF KIrw, and KI2, the Taylor expansion of the
second order of the OB integral KI, from Ref. [26] we
obtain the approximation KI ≈KIrw +KI2� I2 precisely

kI ≤
bffiffiffi
π

p ln2þ ∫
π=4

0

421=4

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosϑ �

ffiffiffi
2

p
sin2ϑ

q
þ 4
π

1
tanϑ

arcsin 21=4
ffiffiffiffiffiffiffiffiffiffiffi
cosϑ

p
tanϑ

� �
þ

�821=8

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosϑ

p
� 21=4 sinϑ

q
� 8
π
ffiffiffiffiffiffiffiffiffiffiffiffi
tanϑ

p arcsin 21=8 cos1=4ϑ
ffiffiffiffiffiffiffiffiffiffiffiffi
tanϑ

p
þ 4ffiffiffiffiffiffiffiffiffiffiffiffi

tanϑ
p


 �
2
6664

3
7775 dϑ

8>>><
>>>:

9>>>=
>>>;
≈

≈3:320b
(54)

Fig. 8 Weighed percentage error at the tip in the case of a dimensionless elliptical crack as a function of the semi-axis b. [Colour figure can be
viewed at wileyonlinelibrary.com]
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up to 10�3 in the range of 0.5 ≤ b ≤ 1. In Table 4, the
agreement among the results obtained with different
equation is satisfactory.

STAR DOMAINS

In this section, we assume that Ω will be a star domain.
Therefore, we can read its boundary in terms of polar
coordinates; that is, we assume that the boundary is
discussed by a C1 function R =R(ϑ) ,ϑ ∈ [0, 2 π]. Of
course, in this case, it is very useful to discretise ∂Ω in
terms of the angle ϑ in order to speed up the numerical
procedure. We take Ω dimensionless, by normalisation
in such a way that max γ

0;2 π½ �
¼ 1, where

γ ϑð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 ϑð Þ þ R’2 ϑð Þ

q
(57)

A careful analysis of our technique allows us to amend
Eq. (14). Let α be the coordinate of the pole Q0.

Pm ¼ R αþmδð Þ cos αþmδð Þ e1 þ sin αþmδð Þ e2ð Þ
(58)

Bjk ¼ ∑
2N�1

0
Qjk � Pm
�� ���2

γ αþmδð Þ

 ��1=2

(59)

Hence, the approximation becomes

kI Q’
� �

≈

ffiffiffi
2

p

π
∑
jk

Bjk

k
σ Qjk

� �
þD σ Q’

� �" # ffiffiffi
δ

p
(60)

and the coefficient D is given by

D ¼ 0:889 þ 0:038 γ αð Þ32 cos 2π
γ αð Þ

 �

(61)

Yet, the sum on the r.h.s. in Eq. (61) is on the index
for which Qjk∈Ω. The link between variables (x,y) and
(u,v) is given by

u ¼ 1
γ

R’ cosα� R sinα
� �

x
h

þ R cosαþ R’ sinα
� �

y� RR’
i

(62)

v ¼ 1
γ

� R cosαþ R’ sinα
� �

x
h

þ R’ cosα� R sinα
� �

yþ R2
i

(63)

with the inverses

x ¼ 1
γ

R’ cosα� R sinα
� �

u� R cosαþ R’ sinα
� �

v
h i

þ R cos αð Þ (64)

y ¼ 1
γ

R cosαþ R’ sinα
� �

uþ R’ cosα� R sinα
� �

v
h i

þ R sin αð Þ (65)

In Eqs (62)–(65), γ, R and R0 are computed at α. By
putting

w ¼ uþ iv; z ¼ xþ iy; λ ¼ 1
γ

Rþ i R’
� �

(66)

We may write Eqs (62)–(65) in the very synthetic form

w ¼ i λ R� e�iα z
� �

(67)

z ¼ eiα iλwþ R
� �

(68)

By taking the Fourier expansion of R(ϑ), that is

R ϑð Þ ¼ ∑
∞

0
Ar cos rϑð Þ þ Br sin rϑð Þð Þ (69)

The condition (x,y)∈Ω becomes

zj j < A0 þ ∑
∞

1

1
zj jn An Re znð Þ þ Bn Im znð Þð Þ (70)

In conclusion, by setting

wjk ¼ Rδ eijδ (71)

zjk ¼ eiα iλwjk þ R
� �

(72)
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From (70) to (72), the condition Qjk∈Ω can be written
as follows

zj j < A0 þ ∑
∞

1

1
zjk
�� ��n An Re znjk

� �
þ Bn Im znjk

� �� �
(73)

For example,whenR ϑð Þ ¼ 1
1þa 1þ a cosϑð Þ, 0≤ a≤ 1/2

(lima on de Paschal), inequality (73) becomes

1þ að Þ zjk
�� ��2 � zjk

�� ��� axjk < 0 (74)

where xjk =Re zjk.

In the case of the curvan crack, that is in dimensionless
form

R ϑð Þ ¼ 1þ a cos4ϑð Þ (75)

with a real number, the normalisation in such a way that
max γ
0;2 π½ �

¼ 1 gives the equation of the contour

R ϑð Þ ¼ λ’ 1þ a cos4ϑð Þ (76)

Fig. 9 (a) Curvan crack subjected to remote uniform tensile stress σ; (b) stress intensity factor in dimensionless form KI

σ n

ffiffiffiffiffi
π b

p (σn nominal tensile
stress, a/b = 0.1; M = 200). [Colour figure can be viewed at wileyonlinelibrary.com]

12 P. LIVIERI AND F. SEGALA

© 2017 Wiley Publishing Ltd. Fatigue Fract Engng Mater Struct 00 1–17

http://wileyonlinelibrary.com


where λ0 is defined as

λ’ ¼

1
1þ a

; 0≤a≤
1
15ffiffiffiffiffi

15
p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 15a2

p ; a≥
1
15

8>>>><
>>>>:

(77)

In general, this operation could be made numerically
by imposing a rescaling of the dimensionless contour
with a λ0 scale factor. The SIF of the star domain will

be that calculated by means of Eq. (60) dividing by
ffiffiffiffi
λ’

p
.

The condition Qjk∈Ω is

zjk
�� �� 5 � p zjk

�� �� 4 � pa x4jk � 6x2jk y
2
jk þ y4jk

� �
< 0 (78)

where yjk = Im zjk.
Figures 9 and 10 show a comparison from the results

given by Eq. (60) and the results present in the
literature25,31 for a curvan crack and a half-circle and half
ρ ¼ f ϑð Þ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2

a2
�1

� �
sinϑj j

r with A/a = 1.5. The

agreement is around some units per cent.

Fig. 10 (a) Half-circle and a shape whose polar equation is ρ = f(ϑ) subjected to remote uniform tensile stress σ, A/a = 1.5; (b) stress intensity
factor in dimensionless form KI

σn
ffiffiffiffiffi
π a

p (M = 200). [Colour figure can be viewed at wileyonlinelibrary.com]
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CONCLUS IONS

In this study, a very accurate procedure was proposed for
the evaluation of the SIF by means of the Oore–Burns
weight function. For defects similar to a star domain, an
explicit algorithm was developed and the equations can
be implemented in standard mathematical software.
The high accuracy reached allows us to use a course mesh
for the computation of the SIF of a crack with a general
shape. A detailed analysis of the SIF at the tip of an
elliptical crack shows that the OB integral gives
maximum errors around 10% also for a small curvature
radius.
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APPEND IX
We denote by fp the Riemann approximation of f, by
choosing the projection of Q on ∂Ω as a starting point.
Then, by Eq. (13) of a previous paper,26 it follows

kI≈
ffiffiffi
2

p

π
δ ∑

jk

hP Qjk

� �
k

þ C
ffiffiffi
δ

p
(A1)

where

hp≈
1
f P

(A2)

Now, let fF be the Riemann approximation of f, by
choosing the ‘pole’ Q0 as the starting point. By
replacing hF with hP in Eq. (A1), we introduce a
correction given by

correction≈�
ffiffiffi
2

p

π
∑

1
k

hF � hPð ÞQjk (A3)

where

hF ≈
1
f F

(A4)

Our problem is therefore a very precise evaluation of
the function hf � hb. We need a picture in order to
illustrate the situation (Fig. A1), where

f P ¼ ∑
M

�M

δ

y2 þm2 δ2
(A5)

f F ¼ ∑
M

�M

δ

y2 þ mþ μð Þ2 δ2 (A6)

where 0≤μ≤ 1
2 and Mδ=1 . By putting a ¼ y

δ , we may
write

f P ¼ 1
δ
∑
M

�M

1
a2 þm2 (A7)

f F ¼ 1
δ

∑
M

�M

1
a2 þ mþ μð Þ2 (A8)

We consider three sets

X ¼ x; yð Þ; a≥1f g (A9)

Y ¼ x; yð Þ; 0≤a≤1; xj j≥δf g (A10)

Z ¼ x; yð Þ; 0≤a≤1; xj j≤δf g (A11)

The sets X,Y,Z are illustrated in Fig. A2. We begin by
computing the contribution to the sum on the r.h.s. in
Eq. (A3) coming from the region X. By the equation

∑
þ∞

�∞

1
a2 þ mþ μð Þ2 ¼ π

a
sh 2πað Þ

ch 2πað Þ � cos 2πμð Þ (A12)

and Eq. (16), it follows that on the set X

f F≈f P � R
δ

(A13)

where

R ¼ 2
μ2

M3 þ
π
a
1� cos 2π μð Þ

e2 π a


 �
(A14)

then

f F≈ f P þ y3=4R
2π3=2

ffiffiffi
δ

p
(A15)

This means that the conservation coming from the
region X is about

� 4
ffiffiffi
2

p ffiffiffi
δ

p

π3=2
∑

1ffiffiffi
k

p ffiffiffiffi
jk

p
e�2k πj δδ≈

� 4
ffiffiffi
2

p ffiffiffi
δ

p

π3=2
∑

1ffiffiffi
k

p ∫
1

1=k

ffiffi
t

p
e�2kπ tdt≈≈

� 4
ffiffiffi
2

p ffiffiffi
δ

p

π3=2
∑
∞

2

1
k2

∫
∞

1

ffiffiffi
u

p
e�2πudu≈0:00020

ffiffiffi
δ

p
(A16)

Fig. A1 Starting point from the pole Q0.
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Now, we consider the contribution to the correction,
due to the set Y. From Eq. (A12), it follows for
small μ/a

f F≈
1
δ
gP � 1

δ
Sμ2 (A17)

where

S ¼ π3

a
1

th π að Þ
1

sh2 π að Þ (A18)

gp ¼
π
a

1
th π að Þ (A19)

hF≈hP þ Sμ2

2g3=2P

ffiffiffi
δ

p
(A20)

We take into account that in the region Y, μ≈ 1
2 kϑ

2,
where tanϑ ¼ y

x :Hence, the contribution is of the type

�
ffiffiffi
2

p ffiffiffi
δ

p

4π
∑k

δ kjδð Þ
g3=2P kjδð Þ

j4δ4
� �

δ≈

�
ffiffiffi
2

p ffiffiffi
δ

p

4π
∑k ∫

1=k

0

S ktð Þ
g3=2P k tð Þ

t4 dt≈

�
ffiffiffiffiffiffiffi
2π

p ffiffiffi
δ

p

4
∑
∞

2

1
k4

∫
1

0

u9=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
th π uð Þp

sh2 π uð Þ du≈

� 0:00031
ffiffiffi
δ

p
(A21)

Hence, the only ‘significant’ contribution comes from
the set Z. We divide Z in three subregions Z1,Z2,Z3
(Fig. A3)

Z1 ¼ x; yð Þ∈Z; 0≤ sin
y
x
≤
1
2

 �
(A22)

Z2 ¼ x; yð Þ∈Z; 1
2
≤ sin

y
x
≤
ffiffiffi
3

p

2

( )
(A23)

Z ¼ x; yð Þ∈Z;
ffiffiffi
3

p

2
≤ sin

y
x
≤1

( )
(A24)

On the region Z1, fP is given by Eq. (A5), while

f F ¼ ∑
δ

y2 þ mδþ xð Þ2 (A25)

with x≈δ 1� ϑ2

2

� �
, y≈ δϑ, tanϑ ¼ y

x : We may write

f P≈
1
δ

1
ϑ2 þ ∑

m≠0

1
ϑ2 þm2

 !
≈

1
δϑ2 1þ π2

3
ϑ2


 �

(A26)

f F≈
1
δ

1

ϑ2 þ ϑ4

4

þ ∑
m≠0

1

ϑ2 þmþ ϑ2

2

� �2
0
B@

1
CA

≈
1

δϑ2 1þ π2

3
� 1
4


 �
ϑ2


 �
(A27)

Fig. A2 Sets for the evaluation of correction C0. [Colour figure can be viewed at wileyonlinelibrary.com]

Fig. A3 Subsets of set Z. [Colour figure can be viewed at wileyonlinelibrary.com]
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From Eqs (A26) and (A27), it follows

hF � hP≈
ffiffiffi
δ

p

8
ϑ3

1þ π2 ϑ2

3

� �3=2 (A28)

By taking into account that on Z, k is fixed and equal
to 1, the contribution is then given by

�
ffiffiffiffi
2

p ffiffiffi
δ

p

4π
∫

1=2

0

ϑ3

1þ π2
ϑ2

3


 �3=2 dϑ≈� 0:00094
ffiffiffi
δ

p

(A29)

In the region Z3, in virtue of Eq. (A12), by putting
tanϑ ¼ y

x, we make of the approximation

f F≈ f P � π3 chπ
sh3 π

ϑ2

δ
≈f P 1� π2

sh2 π
ϑ2


 �
(A30)

The consequence of Eq. (A30) is

hF≈hP þ π3=2
ffiffiffiffiffiffiffiffi
thπ

p

2 sh2 π

ffiffiffi
δ

p
ϑ2 (A31)

The correction due to the set Z3 is then given by

�
ffiffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffi
thπ

p

sh2 π

ffiffiffi
δ

p
∑ j δð Þ2 δ≈

�
ffiffiffiffi
2

p
π7=2

ffiffiffiffiffiffiffiffi
thπ

p

648 sh2 π

ffiffiffi
δ

p
≈� 0:00090

ffiffiffi
δ

p
(A32)

(note that on Z, k is fixed an equal to the unity).
Finally, we conclude by computing the correction
due to the region Z2. Here, we make use of a
numerical procedure. From the results reported in
Table A1, it follows the contribution on Z2:

�
ffiffiffi
2

p

3
0:00638

ffiffiffi
δ

p
≈� 0:00300

ffiffiffi
δ

p
(A33)

Summing up Eqs (A16), (A21), (A29), (A31) and (A33),
we obtain

correction≈� 5:35�10�3
ffiffiffi
δ

p
(A34)

From Eqs (15) and (A34), we deduce the coefficient C0

by choosing Q0 as a starting point on ∂Ω:

C ’ ¼ 0:9275… (A35)

Table A1 Calculation for region Z2 (Fig. A3)

x/δ y2/δ hF � hPð Þ= ffiffiffi
δ

p

0.500 0.750000 0.0045
0.609 0.629119 0.0061
0.707 0.500151 0.0071
0.750 0.437500 0.0072
0.793 0.371151 0.0071
0.866 0.255044 0.0058
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