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ABSTRACT 

In this paper, we give an explicit new formulation for the three-dimensional mode I weight function of 

Oore-Burns in the case where the crack border agrees with a star domain. Analysis in the complex field 

allows us to establish the asymptotic behaviour of the Riemann sums of the Oore-Burns integral in terms 

of the Fourier expansion of the crack border. The new approach gives remarkable accuracy in the 

computation of the Oore-Burns integral with the advantage of reducing the size of the mesh. 

Furthermore, the asymptotic behaviour of the SIF at the tip of an elliptical crack subjected to uniform tensile 

stress is carefully evaluated. The obtained analytical equation shows that the error of the Oore-Burns 

integral tends to zero when the ratio between the ellipse axes tends to zero as further confirmation of its 

goodness of fit. 
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NOMENCLATURE 

δ size of mesh over crack 

Ω crack shape 

Ω∂  crack border 

Q  point of Ω 

'Q  point of crack border 

∆ distance between Q and ∂Ω 

KI mode I stress intensity factor 
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kI mode I stress intensity factor for a dimensionless domain 

KIrw mode I stress intensity factor from Irwin’s equation  

KI2 Taylor expansion up to second order of KI for an ellipse 

y,x  actual Cartesian coordinate system 

y,x  dimensionless Cartesian coordinate system 

v,u  auxiliary dimensionless coordinate system 

b,a  actual semi-axis of an elliptical crack 

a,b dimensionless semi-axis of an elliptical crack 

e eccentricity of ellipse 

K(e) elliptical integral of first kind 

E(e) elliptical integral of second kind 

nσ  nominal tensile stress in y,x  actual Cartesian coordinate system 

σ  nominal tensile stress in y,x  dimensionless Cartesian coordinate system 

 

1. INTRODUCTION 

The advantages of the use of weight functions for the assessment of stress intensity factors (SIF) are well 

known in the literature, especially when many loads act on the component. For each geometry we have to 

estimate the correct weight function related to the location where the crack nucleates and then propagates 

under fatigue loading. For a correct evaluation of the SIF the proper weight function should be calculated, 

however accurate results can be obtained by generalising the weight function derived from the displacement 

function of Petroski and Achenbach1,2. On the basis of the procedure developed by Glinka and Shen1, by 

means of FE analysis, we can obtain the parameter that appears as unknown in the generalised weight 

function proposed by Sha and Yang2. Applications to semi-elliptical cracks3,4,5 or corner cracks6 are present 

in the literature and show the efficiency in the evaluation of the SIF with error in the order of a few percent 

with respect to the FE results. 

For a crack with an irregular shape, the calculation of the SIF is more complex and requires more effort. In 

fact, in order to evaluate the fatigue limit for materials with small notches or defects under mode I loading, 

Murakami and Endo7 considered an average value of the SIF obtained from convex flaws. Murakami8 
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suggested a shape factor, referred to as the square root of the area, about 0.5 for an engineering estimation 

of the maximum SIF for an arbitrarily 3D internal crack or 0.65 for an arbitrarily 3D surface crack9. 

Some analytical weight functions available in the literature are able to relate the SIF at each point of an 

embedded planar two-dimensional crack subjected to mode I loading10,11,12,13,14 or under mixed mode 

loading15,16 . The Oore-Burns12 weight function displays a simple analytic form and gives an exact result in 

the special cases of penny shaped cracks or tunnel cracks. Furthermore, this weight function can be used 

for surface cracks after the introduction of proper coefficients inferred from classical analysis of a surface 

elliptical crack such as Normal-Rauj equations (see for instance refinements17,18). Obviously, the effect of 

vertex singularities is not taken into account because accurate studies are needed19,20. By means of the Oore-

Burns weight an engineering answer will be given without being too time consuming17,18. In this way, for 

example, the SED can be evaluated along the front crack for the evaluation of the fatigue safety factor21,22,23. 

Despite its very compact analytical expression, the numerical evaluation of the Oore-Burns integral 

(hereinafter, OB integral), is very difficult, due to the singular nature of the weight function and special 

integration techniques are required as indicated by Desjardins et al.24 and S. R. Montenegro et al.25. 

For the special case of ellipse cracks, the authors obtained a careful closed-form representation of the 

O-integral along elliptic cracks under general pressure from previous papers. More precisely, they found a 

closed expression of the second order Taylor expansion of the stress intensity factors with respect to 

deviation of the ellipse from the disk for a generic tensile stress over the crack26. The deviation of an ellipse 

from the disk is quantitatively described by the parameter ε=1-b/a, where a and b are the major and minor 

semi-axis, respectively. The exact evaluation of the O-integral by means of an explicit quadrature formula 

with a polar integration grid was also considered by the authors in reference [27]. Our approach drastically 

reduces the computational time to evaluate the O-integral since a very coarse mesh is sufficient without 

loss of accuracy. This was made possible by theoretical evaluation of the coefficient of δ1/2 in the deviation 

between the integral and its Riemann sum (δ is the size of the mesh over the crack). 

We will show that the convergence is extremely fast (tables 2,3). The aim of this paper is to 

permanently optimoze the previous algorithm and to extend it to a general equation for irregular inner 

cracks like to a star domain (and hence every convex crack). The equation is derived from the Oore-

Burns weight function by means of complex analysis. The coefficient of δ1/2 in the expansion of the 

Riemann sum of Oore-Burns was evaluated with an accuracy never previously achieved and this is 
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new with respect to our previous papers, in particular reference [27]. Furthermore, in the case of 

elliptical cracks under uniform tensile loading, the gap between the Oore-Burns integral and the Irwin 

analytic solution is discussed. Finally, a comparison of the stress intensity factors between the proposed 

equations and those taken from the literature will show the validity of the solution. 

 

 

 

2. Background 

The stress intensity factors of the mode I loading of a planar crack Ω  in a three-dimensional body, can be 

made by means of the Oore-Burns12 relationship that agrees with the known results when the crack takes a 

special configuration such as a disk or a tunnel crack. 

Let Ω be an open bounded simply connected subset of the plane and  
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where s is the arch-length on Ω∂  and P(s) describes Ω∂ . Oore and Burns proposed the following 

expression for the mode I stress intensity factor at every point Ω∂∈'Q  when the crack is subjected to a 

nominal tensile loading sn(Q):  
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Under reasonable conditions on the nominal stress σn(Q), the integral (2) is convergent (see for instance 

reference [28]). 

 

 

3. Approximation formula 

 

From now on, we will assume that the boundary of the crack is locally a graph of a C1-function. In order to 

simplify the analytical formulation of KI, it is convenient to consider a dimensionless domain obtained by 

means of a linear isotropic dilatation. The actual crack will be distinguished by means of an upper-line bar, 

so that Ω  is the initial crack and Ω is the dimensionless reference domain. We take Ω as a reference 

domain in such a way that the maximum diameter of Ω is equal to 2. We are able to reconstruct the stress 

intensity factor KI for the actual domain Ω (which is a dilation of a domain Ω) from the identity  Ω=Ω λ

. The relation between KI and the stress intensity factor evaluated for a dimensionless domain kI is given 

by: 

 ))(,'())(,'( QQkQQK nInI λσλσ =  (4) 

where the meaning of the notation is clear and σn is the nominal tensile stress evaluated without the presence 

of the crack is the actual domain Ω  (see Fig. 1). Note that λ is a scalar quantity that has a physical 

dimension equal to a length whereas the physical dimension of k1 is a pressure. 

We fix an orthogonal Cartesian reference x,y of which the origin is for example the centre of mass of Ω. 

Every point Q’ on ∂Ω will be identified by its distance in terms of arc length from a fixed point Q’0 on the 

boundary. We introduce a new orthogonal Cartesian reference (u,v) centred in Q’ by following Fig. 2. A 

point Q can be represented in the forms x⋅e1+ y⋅e2  and  u⋅k1+v⋅k2, where e1, e2, k1, k2 are the versors of the 

axes x,y,u,v. We considered the polar mesh given by the points 

 )coscos( 21, δδδ jkjkkQ kj +=  (5) 

with δ the small submultiple of π/2 and  
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 πδ =−≤≤≥ MMjk ,120,0  (6) 

On the boundary ∂Ω, we introduce a discretisation of size τ=L/[L/δ], where L is the length of ∂Ω and [] 

means the integer part. We denote by Pmjk the point of ∂Ω of which the distance (in terms of arc length) 

from the projection of Qjk on ∂Ω is m⋅τ. Obviously, m runs on the range 

 10 −




≤≤ M
L

m
π

 (7) 

By refining techniques developed in previous work27, we are able to establish an ultimate convergence 

formula for the integral (2). In order to lighten the notation, we put 
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In (13), ζ represents the zeta Riemann function. Then the approximation formula is the following 
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The sum on the r.h.s. of (14) is on the indexes jk for which Qik∈Ω. By inserting a numerical value, we 

obtain 

 ...932854.0=C  (15) 

(see reference27). The proof of (14) is based on some proprieties of the ζ zeta function, Riemann sums, the 

Stone-Waierstrass theorem and the identity 
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In order to greatly save computation time, in our simulations we choose the discretisation on the boundary 

of Ω in such a way that the starting point is Q’ (i.e. fixed) and Pm is the point with the coordinate of mτ. 

This choice implies a slight correction of the coefficient C in (13). The very delicate analysis is done in the 

appendix, of which we show that the correction is about -5.35⋅10-3. More precisely, (14) becomes 
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Remark 1 

In terms of dimensional consistency, by calling δr, δθ, δs the size of the partitions on R2x∂Ω, equation (17) 

is written as follows  

 

 )'(038.0889.0)(
2

)'(
2/3

QQ
k

A
Qk

r

s
rjk

jk

s

I σ
δ

δδσ
δ

δ
π

ϑ








++≈    (18) 

 

4. TEST ON THE UNITARY DISK 

 

We test equation (17) on the unit disk of Fig. 3, in the case of uniform tensile stress σ. The fixed starting 

point on ∂Ω is Po=e1, that is Pm=cos (mδ)⋅e1+sin (mδ)⋅e2. The condition Qjk∈Ω becomes 

 )(sin
2

1,11 δ
δ

jkMj <≤−≤≤  (19) 

and from (7) 

 120 −≤≤ Mm  (20) 

Table 1 shows the accuracy of Eq. (17) in the prediction of the stress intensity factor. The theoretical 

value is equal to 1.275… as evaluated by Irwin29 under uniform nominal stress σ. The theoretical 

expectation is completely satisfied also with a rough mesh. The value of C reported in Table 1 is 

the value obtained by means of the Richardson extrapolation from the result of the only Riemann 
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sum. When the mesh is very accurate (M=6400) the numerical prediction of C agrees with the 

theoretical one reported in Eq. (17). This is confirmation that this work permanently improves every 

other study on the subject. 

 

5. Unitary elliptical cracks 

In this section, we assume Ω is a dimensionless ellipse contour 1
2

2

2

2

≤+
b

y

a

x
 with 10 =≤< ab . The natural 

description of ∂Ω is given in terms of the angle θ related to Cartesian coordinates x,y  by x=a⋅cos θ, y = b 

sin θ (see Fig. 4). By Q’ we mean the point (a⋅cos α) e1 + (b⋅sin α) e2. In this case, the link between x,y and 

u,v is given by: 
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where 
2

2
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a

b
e −=  is the eccentricity of the ellipse and  
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For fixed e, denoted by )(ϕE the complete elliptic integral of the second kind. Moreover let 
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by applying (17) it follows 
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Tables 2 and 3 show that the approximation (29) is absolutely confirmed. Obviously, when the b/a decreases 

the percent error increases due to the nature of the O-integral12,24,30. 

We may speed up equation (29) (at least by a factor of 10) by choosing the mesh on Ω∂ in terms of the 

angle ϑ , rather than are length s. The reason is to avoid the amplitude function E-1 which slows down the 

program heavily. Therefore, let 
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The equation (29) is amended as follows  
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where G=G(α, e) is a bounded function and 0≤e2 G≤0.02. By reading Qik and Pm in the reference (u,v), 

we have Qjk given by (5) and  
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We clarify the condition Qjk∈Ω in the sum on the r.h.s. of (33). By (23), (24) the request is equivalent to 
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We may speed up (29) and (33) by a standard extrapolation argument. The conclusion is 
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where S(δ) represents the Riemann sum 
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Tables 4 reports a comparison with Irwin’s exact solution and Eq. (33) as function of the a/b ratio. The 

difference between the results obtained in Tables 3 and 4 is very small. Furthermore, the same table reports 

the calculation of the approximation KI2 of KI obtained by means of a second order approximation of the 

Oore-Burns integral proposed in explicit form in reference26. The conclusion is that equation (29) has an 

essentially theoretical value. The equations that are really useful from an operational point of view are (33) 

and (37). 

Now we conclude this section with the analysis of the accuracy in the O-integral prediction in the classic 

case of an elliptical crack under uniform tensile loading.  

As is well known, when b tends toward zero the SIF at the notch tip radius tends to have a gap between the 

classical Irwin solution. In fact, for b/a equal to 0.2 Oore and Burns obtained a percent error around 17%, 

whereas Desjardins et al24, by means of an optimozed numerical solution, calculated a value of 18.4%. Eq. 

(33) gives a value of 17.5% with M=3200. Montenegro et al.25, under the hypothesis that the error depends 

on the ellipse aspect ratio and on the local crack front curvature, introduced the corrective function fc for 

the Oore-Burns integral. On the other hand, in a previous paper30 the authors showed that when an elliptical 

crack is assumed under uniform tensile loading, the O-integral gives a first order approximation of SIF 

along the whole crack front, very close to the first order approximation of IrwK  Irwin’s exact solution. In 

particular, when the eccentricity e of the ellipse tends to zero, the principal contribution 
π20

2
e  to the 

discrepancy is very small. However, the Irwin’s theoretical equation at the notch tip gives a value of the 

SIF that tends to zero when b/a→0. So that, a more realistic comparison between the O-integral and the 

Irwin equation should be made on the basis of a weighted error of the type: max,/)( IrwIrwI KKK −  where 

KIrw,max is the maximum value of SIF for the crack with ratio b/a. 
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In order to evaluate the weighted error, we conclude this section by examining the asymptotic behaviour of 

the Oore-Burns integral when b/a→0. For simplicity, it was assumed a=1. For uniform pressure σ =1, the 

well-known result of Irwin is given by 

 ( ) 4/1222 cossin
)(

)( αα
π

α b
eE

b
I +=  (39) 

Therefore, for fixed α∈]0,π/2[, one has 

 0,sin)( →≈ bbI απα  (40) 

and 

 0,)0( →≈ bbI π  (41) 

In view to find the behaviour of the Oore-Burns integral for b→0, we need a preliminary estimate. By 

referring to Fig. 5, we put 

 ),(distance Ω∂=∆ Q  (42) 
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Then, by Carnot 
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On convex sets, ω<π/2. We consider Q* the origin on ∂Ω, and so in terms of arc length, the coordinate of 

–Q* is -L≡L, 2L being the length of the ellipse. By taking into account ssPQ ≤− )(*
, from (44) it follows 

that 

 
222

)( ssPQ +∆=−  (45) 

and then 

 )1()(
π

π b
Qf −

∆
≥  (46) 

 

 0,))(1()( →∆≈+∆≤ bbOQh
ππ

 (47) 



 12

When 0≠α , we consider for example 2/πα = . Then, by Fig. 6, the asymptotic behaviour of 

Oore-Burns is given by the model 
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In a similar way, it is not difficult to verify that for 0≠α , the asymptotic behaviour of Irwin and 

Oore-Burns agrees. The problem is for 0=α . By putting 
22

1

b
c = , the model for Oore-Burns is given by 
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where Y is the set in Fig. 7a. 

We divide region Y in four parts, by Fig. 7b. On the region Y1 and Y2 , we make use of the estimate  

 2
ycx −≤∆  (50) 

while on the region Y3 and Y4  we make use of the estimate 

 ( )ycx
c

−≤∆ 1
 (51) 

We illustrate, for example, the contribution coming from region Y2. By (47), (49) and (50) we have to 

bind the integral 
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By changing coordinates 
ϑϑ tan

,
tan2 c

z
y

c

z
x == , we may compute kY2. Precisely 
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b
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By taking the overall contributions into account, the Oore-Burns integral for small b is bound by 
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A much more refined analysis of the function ∆ allows us to improve the estimation (54) up to 

 bk I 90.2≤  (55) 

 

In virtue of (55) the weighted percentage of the error of Oore-Burns with respect to Irwin KIrw (much 

more significant than a simple percentage) is then bound by 

 0,63.0
max,

→≤−
bb

K

KK

Irw

IrwI  (56) 

That is the weighed percentage →0 for b→0. The estimate (56) is presumably optimal and shows an 

excellent agreement with numerical simulations as reported in Fig. 8. When b∼1, weighted percentage 

error ∼ 






 + εε
16

9
1

20
 with b−=1ε  (see reference30). 

Finally, in this section we make the comparison between equation (33) and the results of Irwin’s 

equation. By calling I2 the Taylor expansion of second order of the Irwin stress intensity factor KIrw 

and KI2 the Taylor expansion of the second order of the Oore-Burns integral KI, from reference26 

we obtain the approximation 
22 IKKK IIrwI −+≈   precisely up to 10-3 in the range 0.5≤b≤1. In table 

4, the agreement among the results obtained with different equation is satisfactory. 

 

6  STAR DOMAINS 

 

In this section we assume Ω will be a star domain. Therefore we can read its boundary in terms of polar 

coordinates, i.e. we assume the boundary is discussed by a C1 function ]2,0[),( πϑϑ ∈= RR . Of course in 
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this case it is very useful to discretise ∂Ω in terms of the angle ϑ  in order to speed up the numerical procedure. 

We take Ω dimensionless, by normalisation in such a way that 1max
]2,0[

=
π
γ , where 

 )('R)(R)( 22 ϑ+ϑ=ϑγ  (57) 

A careful analysis of our technique allows us to amend equation (14). Let α be the coordinate of the pole 

Q’. 
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Hence the approximation becomes 
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and the coefficient D is given by 
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Yet, the sum on the r.h.s. in (61) is on the index for which Qjk∈Ω. The link between variables (x,y) and 

(u,v) is given by 

 ( ) ( )[ ]'sin'cossincos'
1

RRyRRxRRu −++−= αααα
γ

 (62) 

 ( ) ( )[ ]2sincos'sin'cos
1

RyRRxRRv +−++−= αααα
γ

 (63) 

With the inverses  

 ( ) ( )[ ] )cos(sin'cossincos'
1 ααααα
γ

RvRRuRRx ++−−=  (64) 

 ( ) ( )[ ] )sin(sincos'sin'cos
1 ααααα
γ

RvRRuRRy +−++=  (65) 

In the equations (62)-(65) γ, R, R’ are computed at α. By putting 

 )'(
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,, RiRiyxzivuw +=+=+=
γ

λ  (66) 
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We may write (62)-(65) in the very synthetic form 

 ( )zeRiw
iαλ −−=  (67) 

 )( Rwiez
i += λα  (68) 

By taking the Fourier expansion of )(ϑR , that is 
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the condition (x,y)∈Ω becomes 

 ( )
∞

++<
1

0 )(Im)(Re
1 n

n

n

nn
zBzA

z
Az  (70) 

In conclusion, by setting 

 
δδ ij
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From (70-(72) the condition Qjk∈Ω. Can be written as follows 
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For example, when )cos1(
1

1
)( ϑϑ a

a
R +

+
= , 0≤a≤1/2 (limaҫon de Pascal), inequality (73) becomes 

 0)1(
2

<−−+ jkjkjk xazza  (74) 

 

where 
jkjk zx Re= .  

In the case of the curvan crack, that is in dimensionless form: 

 )4cos1()( ϑϑ aR +=  (75) 

 

with a real number, the normalisation in such a way that 1max
]2,0[

=
π
γ , gives the equation of the contour: 

 )4cos1(')( ϑλϑ aR +=  (76) 

where λ' is defined as: 
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In general this operation could be made numerically by imposing a rescaling of the dimensionless contour 

with a λ’ scale factor. The SIF of the star domain will be that calculated by means of Eq. (60) dividing by 

√�′. 
The condition Qjk∈Ω is 

 ( ) 06 4224
45

<+−−− jkjkjkjkjkjk yyxxapzpz  (78) 

where 
jkjk zy Im=  

Figs 9 and 10 show a comparison from the results given by Eq. (60) and the results present in the 

literature25,31 for a curvan crack and a half-circle and half  � = ���	 = 

�����

�����|��� �|
   with A/a=1.5. The 

agreement is around some units percent. 

 

6. CONCLUSIONS 

In this study, a very accurate procedure was proposed for the evaluation of the stress intensity factor (SIF) 

by means of the Oore-Burns weight function. For defects similar to a star domain an explicit algorithm was 

developed and the equations can be implemented in standard mathematical software. The high accuracy 

reached allows us to use a course mesh for the computation of the SIF of a crack with a general shape. 

Detailed analysis of the SIF at the tip of an elliptical crack shows that the O-integral gives maximum errors 

around ten percent also for a small curvature radius. 

 

APPENDIX 

We denote by fp the Riemann approximation of f, by choosing the projection of Q on ∂Ω as a starting point. 

Then, by equation (13) of a previous paper26 it follows 
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  +≈
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where  

 
P

p
f

h
1≈   (A2) 

Now let fF the Riemann approximation of f, by choosing the “pole” Q’ as the starting point. By replacing 

hF with hP in A1, we introduce a correction given by 

 ( ) −−≈ jkPF Qhh
k

correction
12

π
  (A3) 

where 

 
F

F
f

h
1≈   (A4) 

Our problem is therefore a very precise evaluation of the function hf-hb. We need a picture in order to 

illustrate the situation (see Figs. A1) where: 
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where  
2

1
0 ≤≤ µ  and 1=δM . By putting 

δ
y

a = , we may write 

 
− +
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M

M

P
ma

f
22

11

δ
  (A7) 

 
− ++

=
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F
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f
22 )(

11
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  (A8) 

We consider three sets 

 { }1),,( ≥= ayxX   (A9) 

 { }δ≥≤≤= xayxY ,10),,(   (A10) 

 { }δ≤≤≤= xayxZ ,10),,(   (A11) 
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The sets X,Y,Z are illustrated in Fig. A2. We begin by computing the contribution to the sum on the r.h.s. 

in (A3) coming from the region X. By the equation 
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and the equation (16), it follows that on the set X 
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This means that the conservation coming from the region X is about 
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Now we consider the contribution to the correction, due to the set Y. From (A12) it follows for small a/µ   

 211 µ
δδ

Sgf PF −≈   (A17) 

where 
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We take into account that in the region Y, 
2

2

1 ϑµ k≈ where .tan
x

y=ϑ  Hence the contribution is of the type  
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Hence, the only “significant” contribution comes from the set Z. We divide Z in three subregions Z1,Z2,Z3 

(see Fig. A3) 
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On the region Z1, fP is given by (A5), while 
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  (A25) 

with 
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From (A26) and (A27) it follows 
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By taking into account that on Z, k is fixed and equal to one, the contribution is then given by 
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In the region Z3, in virtue of (A12), by putting 
x

y=ϑtan , we make of the approximation 
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The consequence of (A30) is  
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The correction due to the set Z3 is then given by  
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(note that on Z, k is fixed an equal to the unity). Finally, we conclude, by computing the correction due to 

the region Z2. Here, we make use of a numerical procedure. From results, reported in Table A1, it follows 

the contribution on Z2: 

 δδ 00300.000638.0
3

2 −≈−   (A33) 

Summing up (A16), (A21), (A29),(A31) and (A33) we obtain 

 δ3
1035.5

−⋅−≈correction   (A34) 

From (15) and (A34) we deduce the coeffficient C’ by choosing Q’ as starting point on ∂Ω 

 ...9275.0'=C   (A35) 
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