The natural problem we approach in the present paper is to show how the notion of formally smooth (co)algebra inside monoidal categories can substitute that of (co)separable (co)algebra in the study of splitting bialgebra homomorphisms. This is performed investigating the relation between formal smoothness and separability of certain functors and led to other results related to Hopf algebra theory. Between them we prove that the existence of ad-(co)invariant integrals for a Hopf algebra H is equivalent to the separability of some forgetful functors. In the finite dimensional case, this is also equivalent to the separability of the Drinfeld Double D(H) over H. Hopf algebras which are formally smooth as (co)algebras are characterized. We prove that if π : E → H is a bialgebra surjection with nilpotent kernel such that H is a Hopf algebra which is formally smooth as a K-algebra, then π has a section which is a right H-colinear algebra homomorphism. Moreover, if H is also endowed with an ad-invariant integral, then this section can be chosen to be H-bicolinear. We also deal with the dual case.
Separable Functors and Formal Smoothness
ARDIZZONI, Alessandro
2008
Abstract
The natural problem we approach in the present paper is to show how the notion of formally smooth (co)algebra inside monoidal categories can substitute that of (co)separable (co)algebra in the study of splitting bialgebra homomorphisms. This is performed investigating the relation between formal smoothness and separability of certain functors and led to other results related to Hopf algebra theory. Between them we prove that the existence of ad-(co)invariant integrals for a Hopf algebra H is equivalent to the separability of some forgetful functors. In the finite dimensional case, this is also equivalent to the separability of the Drinfeld Double D(H) over H. Hopf algebras which are formally smooth as (co)algebras are characterized. We prove that if π : E → H is a bialgebra surjection with nilpotent kernel such that H is a Hopf algebra which is formally smooth as a K-algebra, then π has a section which is a right H-colinear algebra homomorphism. Moreover, if H is also endowed with an ad-invariant integral, then this section can be chosen to be H-bicolinear. We also deal with the dual case.File | Dimensione | Formato | |
---|---|---|---|
ardizzoni2007.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
349.94 kB
Formato
Adobe PDF
|
349.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
0407095.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
436.04 kB
Formato
Adobe PDF
|
436.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.