We present analytical and numerical results on integrability and transition to chaotic motion for a generalized Ziegler pendulum, a double pendulum subject to an angular elastic potential and a follower force. Several variants of the original dynamical system, including the presence of gravity and friction, are considered, in order to analyze whether the integrable cases are preserved or not in presence of further external forces, both potential and non-potential. Particular attention is devoted to the presence of dissipative forces, that are analyzed in two different formulations. Furthermore, a study of the discrete version is performed. The analysis of periodic points, that is presented up to period 3, suggests that the discrete map associated to the dynamical system has not dense sets of periodic points, so that the map would not be chaotic in the sense of Devaney for a choice of the parameters that corresponds to a general case of chaotic motion for the original system.

Chaotic dynamics of a continuous and discrete generalized Ziegler pendulum

Disca, Stefano;Coscia, Vincenzo
2024

Abstract

We present analytical and numerical results on integrability and transition to chaotic motion for a generalized Ziegler pendulum, a double pendulum subject to an angular elastic potential and a follower force. Several variants of the original dynamical system, including the presence of gravity and friction, are considered, in order to analyze whether the integrable cases are preserved or not in presence of further external forces, both potential and non-potential. Particular attention is devoted to the presence of dissipative forces, that are analyzed in two different formulations. Furthermore, a study of the discrete version is performed. The analysis of periodic points, that is presented up to period 3, suggests that the discrete map associated to the dynamical system has not dense sets of periodic points, so that the map would not be chaotic in the sense of Devaney for a choice of the parameters that corresponds to a general case of chaotic motion for the original system.
2024
Disca, Stefano; Coscia, Vincenzo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2554710
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact