
Vol.: (0123456789)
1 3

Meccanica 
https://doi.org/10.1007/s11012-024-01848-5

RESEARCH

Chaotic dynamics of a continuous and discrete generalized 
Ziegler pendulum

Stefano Disca · Vincenzo Coscia

Received: 2 April 2024 / Accepted: 27 June 2024 
© The Author(s) 2024

Abstract  We present analytical and numeri-
cal results on integrability and transition to chaotic 
motion for a generalized Ziegler pendulum, a dou-
ble pendulum subject to an angular elastic potential 
and a follower force. Several variants of the original 
dynamical system, including the presence of grav-
ity and friction, are considered, in order to analyze 
whether the integrable cases are preserved or not in 
presence of further external forces, both potential 
and non-potential. Particular attention is devoted to 
the presence of dissipative forces, that are analyzed 
in two different formulations. Furthermore, a study 
of the discrete version is performed. The analysis of 
periodic points, that is presented up to period 3, sug-
gests that the discrete map associated to the dynami-
cal system has not dense sets of periodic points, so 
that the map would not be chaotic in the sense of 
Devaney for a choice of the parameters that cor-
responds to a general case of chaotic motion for the 
original system.

Keywords  Double pendulum · Non-integrability · 
Transition to chaos · Friction · Devaney-chaos

1  Introduction

The Ziegler pendulum is a classical dynamical system 
introduced by Ziegler [1], in order to study the appli-
cability of the stability criteria to non-conservative sys-
tems [2]. In his treatment, Ziegler studied the motion 
for small angles of a planar physical double pendu-
lum composed by two rigid rods and subject to grav-
ity, angular elastic potentials on the pins and a follower 
force along the lower rod. Such as the classical double 
pendulum [3–5], the system shows itself to be chaotic. 
The simpler version considered in [6], that is a math-
ematical double pendulum not subject to gravity, exhib-
its chaotic motion too, but existence of regular solutions 
is found in presence of particular symmetries, regard-
less the initial conditions on the canonical variables of 
the system. Different treatments of integrability and 
chaotic dynamics of this system can be found in [7, 8]. 
The Ziegler pendulum is well-known for the paradoxi-
cal destabilization of the system when subject to damp-
ing [9–11], while in general a non-conservative system 
gains stability in presence of a dissipative force. The 
role of dissipation in the dynamics of the Ziegler pen-
dulum has been studied, among others, in [12], where 
it is numerically found the occurrence of stable limit-
cycles in presence of damping. For an optimization 
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point of view of damped and undamped system see also 
[13].

In this work we define the Ziegler pendulum as 
a planar mathematical double pendulum consisting 
of three material points A, B, C having mass m1 , m2 , 
m3 respectively. The point A is held at constant dis-
tance from the point O by means of a massless rod 
of length l2 , while the points B and C are positioned 
at the ends of a second massless rod hinged in A in 
such a way that BA = l1 and AC = l3 (see Fig. 1). On 
the system acts a force of size F always direct as the 
vector B − C and two elastic forces produced by two 
cylindrical springs placed on the hinges O and A and 
having elastic constants k1 and k2 . Furthermore, we 
write M ∶= mA + mB + mC for the total mass and put 
Δ ∶= mBl1 − mCl3 , that quantifies the distribution of 
mass on the lower rod.

For the rest of the paper we refer to the above defi-
nition of Ziegler pendulum, originally proposed in 
[6]. Notice that, by taking l1 = 0 or l3 = 0 , this gen-
eralized version returns the Ziegler pendulum defined 
in [1], except for the presence of gravity.

By choosing �1 , �2 as generalized variables, we 
have the following expressions for the velocities: 

(1a)v2
A
= l2

2
𝜑̇2

2

(1b)
v2
B
= l2

2
𝜑̇2

2
+ l2

1
(𝜑̇1 + 𝜑̇2)

2 − 2l1l2𝜑̇2(𝜑̇1 + 𝜑̇2) cos𝜑1

 The elastic potential energy is given by

Furthermore the system is subject to a follower force 
with constant magnitude

to which the generalized forces 

 are associated.
The kinetic energy has the form

where 

 for the standard Ziegler pendulum.
The Euler–Lagrange equations can be written as 

follows: 

 where 

(1c)
v2
C
= l2

2
𝜑̇2

2
+ l2

3
(𝜑̇1 + 𝜑̇2)

2 + 2l2l3𝜑̇2(𝜑̇1 + 𝜑̇2) cos𝜑1.

(2)Π =
1

2
k1�

2

1
+

1

2
k2�

2

2
.

(3)F = F
rA − rC

|rA − rC| =
(
−F cos(�1 + �2)

F sin(�1 + �2)

)
,

(4a)Q1 =F ⋅

�rC

��1

= 0

(4b)Q2 =F ⋅

�rC

��2

= −Fl2 sin�1

(5)T =
1

2

(
A11𝜑̇

2

1
+ (A12 + A21)𝜑̇1𝜑̇2 + A22𝜑̇

2

2

)
,

(6a)A11 =mBl
2

1
+ mCl

2

3

(6b)A12 =A21 = A11 − Δl2 cos�1

(6c)A22 =A11 +Ml2
2
− 2Δl2 cos�1

(7a)A11𝜑̈1 + A12𝜑̈2 = r1

(7b)A21𝜑̈1 + A22𝜑̈2 = r2,

(8a)r1 = −k1𝜑1 + Δl2𝜑̇
2

2
sin𝜑1

(8b)
r2 = −k2𝜑2 − Δl2𝜑̇1(𝜑̇1 + 2𝜑̇2) sin𝜑1 − Fl2 sin𝜑1.

Fig. 1   A generalized Ziegler pendulum: three material points 
are joined by two massless rigid rods, with two cylindrical 
springs located on the pins and a follower force acting on the 
lower rod
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 An alternative form for the system (7), useful also for 
the numerical calculations, is the following one: 

 It has been proved in [6] that for k2 = 0 and in pres-
ence of two particular symmetries the system is inte-
grable: in the sense of Liouville [14] for the Hamilto-
nian case F = 0 , in the sense of Jacobi [15] for the 
non-Hamiltonian case Δ = 0 . Furthermore, in these 
two cases there exists a family of periodic solutions 
that intersect the plane �1 = 0 , and the integrability 
survives for small breaking of these symmetries (i.e. 
F or Δ sufficiently small). The integrability of the sys-
tem results from the cyclicity of the variable �2 in the 
case k2 = 0 ; in particular for the Hamiltonian case 
( F = 0 ) this cyclicity gives rise to a further first inte-
gral for the system, that is the conjugate momentum 
K =

𝜕L

𝜕𝜑̇2

.
In view of the results indicated above, in the sequel 

we analyze the role in the dynamics of further exter-
nal forces, both conservative and not, in order to ver-
ify whether or not the integrabilty of the system sur-
vives in presence of them and for k2 = 0 . Moreover, 
we study a discrete map associated to the system (9) 
in order to check if it verifies the definition of chaotic-
ity in the sense of Devaney [16, 17] for an arbitrary 
choice on k2 . All the numerical simulations presented 
have been produced by a Runge–Kutta method of 
fourth order, with a size step dt = 0.005 and a num-
ber of iteration n = 50000-500000, implemented in 
Python; we also report the computation of the Lya-
punov exponents for some cases, by using a proper 
MATLAB code1 that exploits an algorithm proposed 
in [18] for the calculation of Lyapunov exponents of 
systems of ordinary differential equations.

(9a)𝜑̇1 = v1

(9b)v̇1 =
A22r1 − A12r2

A11A22 − (A12)
2

(9c)𝜑̇2 = v2

(9d)v̇2 =
A11r2 − A12r1

A11A22 − (A12)
2
.

The paper is organized as follows. In Sect.  2 we 
analyze the role of gravity on the dynamics. The 
effect of linear elastic potentials is treated in Sect. 3 in 
Sect. 5, while a brief analysis of three simple geomet-
ric variants. Then, the role of different kinds of fric-
tion on the system is discussed in Sect. 4. Moreover, 
in Sect. 6 we study a discrete version of the system, 
where we propose a conjecture on properties of the 
sets of periodic points. Finally in Sect. 7 we point out 
the concluding remarks and reserch perspectives.

2 � Gravity

In this section we consider a vertical Ziegler pendu-
lum subject to gravity, that is we include in the equa-
tions of motion a further potential energy

The terms Aij defined in the (6) do not change, while 
for rj we have 

 The integrability of the system is lost for the Hamil-
tonian case F = 0 , since the variable �2 is not cyclic 
anymore. This is not unexpected, since in absence 
of the external force the system is actually a double 
pendulum subject to an elastic potential, that does not 
introduce terms in order to compensate the chaotic 
behavior (Fig. 2).

Anyway, for the non-Hamiltonian case Δ = 0 we 
have 

 If we think of an angle-dependent form

(10)

VG = g
∑

j=A,B,C

mjyj = −Mgl2 sin�2 + Δg sin(�1 + �2).

(11a)r1 = −k1𝜑1 + Δl2𝜑̇
2

2
sin𝜑1 + Δg cos(𝜑1 + 𝜑2)

(11b)
r2 = −Δl2𝜑̇1(𝜑̇1 + 2𝜑̇2) sin𝜑1 − Fl2 sin𝜑1

−Mgl2 cos𝜑2 + Δg cos(𝜑1 + 𝜑2).

(12a)A11 = A12 = A21 = mBl
2

1
+ mCl

2

3

(12b)A22 = A11 +Ml2
2

(12c)r1 = −k1�1

(12d)r2 = −Fl2 sin�1 −Mgl2 cos�2.

1  Copyright (c) 2004, Vasiliy Govorukhin. All rights reserved.
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for the force, the term r2 vanishes and the system (7) 
reduces to 

 that is (in this case all coefficients are constant) 

 By substituting (15b) in (15a) we obtain the follow-
ing equation independent of �2

that is a one-dimensional harmonic oscillator with 
frequency

Given that, the motion for �2 is solved by quadratures

(13)F(�1,�2) = −Mg
cos�2

sin�1

(14a)A11(𝜑̈1 + 𝜑̈2) = −k1𝜑1

(14b)A11𝜑̈1 + A22𝜑̈2 = 0,

(15a)𝜑̈1 + 𝜑̈2 =
−k1

A11

𝜑1

(15b)A11𝜑̇1 + A22𝜑̇2 = K.

(16)𝜑̈1

(
1 −

A11

A22

)
+

k1

A11

𝜑1 = 0,

(17)�2 ∶=
k1

A11

A22

A22 − A11

.

This is a very simple result, but it is worth to observe 
that, in order to obtain it, we must impose a non con-
stant magnitude for the force, that is an ad hoc form 
for the external force that allows r2 to vanish. Further-
more, the expression (13) is singular if �1 = k� and 
�2 ≠ k� +

�

2
 with k ∈ ℕ , that is for an infinite set of 

values and initial conditions.
However, even if the gravity destroys the inte-

grable cases known for the Ziegler pendulum, the 
system shows isolated cases of regular motion for a 
proper choice of parameters and initial conditions. 
An interesting feature, that can be found in other 
chaotic systems [19], is the fast transition shown 
from a chaotic regime to a regular one. As an exam-
ple, the motion for two close values of l3 is shown 
in Fig. 3 and 4 (initial conditions and all the other 
parameters are kept the same). The transition from 
a regular motion to a chaotic one is confirmed by 
the computation of the Lyapunov exponents: null 
Lyapunov exponents are associated to the motion 
shown in Fig. 3, while the motion shown in Fig. 4 
exhibits a positive Lyapunov exponent ��1

∼ 0.19.

(18)𝜑2(t) =
K

A11

t −

t

∫
t0

A11𝜑̇1(t
�)dt�.

Fig. 2   Chaotic motion in presence of gravity. Parameters: 
mA = 1 , mB = 1.5 , mC = 1 , l1 = 1 , l2 = 1 , l3 = 1 , k1 = 2 , F = 0 . 
Initial conditions: �1(0) = � , �2(0) = 0.1 , v1(0) = v2(0) = 0

Fig. 3   Periodic motion in presence of gravity (compare 
with Fig.  4). Parameters: mA = 1 , mB = 1 , mC = 1 , l1 = 1 , 
l2 = 1 , l3 = 1.46 , k1 = 1 , F = 0 . Initial conditions: �1(0) = � , 
�2(0) = 0 , v1(0) = v2(0) = 0
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3 � Linear springs

In this section we consider Ziegler pendulum with 
two further linear springs that join the fixed point 
with the two ends of the lower rods (Fig. 5).

The system is now subject to a further elastic 
potential

Since the elongation of these linear springs depends 
only on the rotation of the lower rod, as one can figure 

(19)VEL =
1

2
kOB|OB|2 + 1

2
kOC|OC|2.

out from a physical point of view, the elastic poten-
tial must be a function of �1 ; therefore the variable �2 
remains cyclic and all the previous results still hold 
for this model. The quadratic elastic potential is eas-
ily evaluated by computing the lengths of the springs. 
If we denote B′ the orthogonal projection of B on the 
rod OA , we have

and in analogous way, if we call A′ the orthogonal 
projection of A on the spring OC , we have

so that the quadratic elastic potential can be written as

up to a constant. The equations of motion change as 
follows: the terms Aij and r2 still follow the (6) and 
(8), while r1 earns a term due to �VEL

��1

Due to the cyclicity of �2 , the cases F = 0 and Δ = 0 
are still integrable in the sense previously discussed. 
Furthermore, a new symmetry arises, associated to 
the case kOBl1 = kOCl3 . This situation physically cor-
responds to have two external elastic forces that com-
pensate each other, so the motion is the same that we 
would have for a standard Ziegler pendulum (Figs. 6, 
7, 8).

However, the system is integrable for all the pos-
sible values of kOB and kOC , in the sense of Liou-
ville if F = 0 or in the sense of Jacobi if Δ = 0 . In 
particular all the results proved in [6] still hold, such 
as for example the existence of a family of periodic 
solutions that intersect the plane �1 = 0 . The pres-
ence of the linear springs of course modifies the peri-
odic solutions of the system; in particular, they show 
to have intersections, absent in the standard case, as 
depicted in Fig. 9.

4 � Three geometric variants

Let us consider a Ziegler pendulum with two physical 
homogeneous rods, as introduced in [1] (see Fig. 10). 
We denote by CU = (xU , yU) and CD = (xD, yD) the 

(20)|OB|2 = l2
1
+ l2

2
− 2l1l2 cos�1

(21)|OC|2 = l2
2
+ l2

3
+ 2l2l3 cos�1,

(22)VEL = l2(kOCl3 − kOBl1) cos�1

(23)
r1 = −k1𝜑1 + Δl2𝜑̇

2

2
sin𝜑1 − l2(kOCl3 − kOBl1) sin𝜑1.

Fig. 4   Chaotic motion in presence of gravity (compare 
with Fig.  3). Parameters: mA = 1 , mB = 1 , mC = 1 , l1 = 1 , 
l2 = 1 , l3 = 1.45 , k1 = 1 , F = 0 . Initial conditions: �1(0) = � , 
�2(0) = 0 , v1(0) = v2(0) = 0

Fig. 5   The Ziegler pendulum with two linear springs (angles 
defined in Fig. 1)
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centers of mass of the upper and lower pendulum, 
with masses mU and mD respectively; we still use �1,2 
as generalized coordinates of the system and refer to 
the lengths previously introduced.

Denoting by � = �1 + �2 the angle between the 
lower rod and the horizontal axis, it is easy to find

and

(24)

{
xU =

l2

2
cos�2

yU = −
l2

2
sin�2

The kinetic energy of the upper pendulum, that 
rotates around the fixed point O, is

(25)

{
xD = l2 cos�2 − (

l1−l3

2
) cos(�1 + �2)

yD = −l2 sin�2 + (
l1−l3

2
) sin(�1 + �2).

(26)TU =
1

6
mUl

2

2
𝜑̇2

2
,

Fig. 6   Closed trajectory in presence of two linear springs, 
F = 0 and kOBl1 = kOCl3 . Parameters: mA = 1 , mB = 1 , mC = 2 , 
l1 = 1 , l2 = 1 , l3 = 2 , k1 = 2 , kOB = 1 , kOC = 0.5 . Initial condi-
tions: �1(0) = � , �2(0) = 0.2 , v1(0) = 0.1 , v2(0) = 0

Fig. 7   Closed trajectory in presence of two linear springs, 
Δ = 0 and kOBl1 = kOCl3 . Parameters: mA = 1 , mB = 1 , mC = 2 , 
l1 = 1 , l2 = 1 , l3 = 0.5 , k1 = 2 , F = 2 , kOB = 1 , kOC = 2 . Initial 
conditions: �1(0) = � , �2(0) = 0.2 , v1(0) = 0.1 , v2(0) = 0

Fig. 8   Closed trajectories in presence of two linear springs, 
F = 0 and kOBl1 ≠ kOCl3 . Parameters: mA = 2 , mB = 1 , mC = 3 , 
l1 = 1 , l2 = 1 , l3 = 3 , k1 = 2.5 , kOB = 3 , kOC = 0 . Initial condi-
tions: �1(0) = � , �2(0) = 0.2 , v1(0) = 0.1 , v2(0) = 0

Fig. 9   A family of periodic solutions in presence of two lin-
ear springs and F = 0 . Parameters: mA = 2 , mB = 1 , mC = 3 , 
l1 = 1 , l2 = 1 , l3 = 3 , k1 = 2.5 , kOB = 3 , kOC = 1 . Initial con-
ditions: �1(0) = � , �2(0) =

�

2
 , v1(0) = 0.5 , v2(0) = 0.1j with 

j = 0,… , 6
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while the kinetic energy of the lower pendulum is 
found to be

The parameters in the equations of motion (7) are 
modified in the following way: 

 We formally recover the same equations of motion 
valid for the standard Ziegler pendulum. The sym-
metry m1l1 − m3l3 = 0 is replaced by the symme-
try l1 − l3 = 0 , which again corresponds to have the 

(27)
TD =

1

2
mD

(
l2
2
𝜑̇2

2
+

(
l1 − l3

2

)2

(𝜑̇1 + 𝜑̇2)
2 − l2(l1 − l3)𝜑̇2(𝜑̇1 + 𝜑̇2) cos𝜑1

)

+
1

24
mD(l1 + l3)

2𝜑̇2

1
.

(28a)A11 =
mD

3
(l2
1
+ l3

3
− l1l3)

(28b)

A12 = A21 =
mD

4
(l1 − l3)

2 −
mD

2
l2(l1 − l3) cos�1

(28c)

A22 =
mU

3
l2
2
+

mD

4

(
4l2

2
+ (l1 − l3)

2

)
− mDl2(l1 − l3) cos�1

(28d)r1 = −k1𝜑1 +
mD

2
l2(l1 − l3)𝜑̇

2

2
sin𝜑1

(28e)
r2 = −k2𝜑2 −

mD

2
l2(l1 − l3)𝜑̇1(𝜑̇1 + 2𝜑̇2) sin𝜑1 − Fl2 sin𝜑1.

lower center of mass located on the pin between the 
two rods. The usual two integrable cases hold and the 

motion is formally the same as for the standard Zie-
gler pendulum.

For a Ziegler pendulum with a physical upper 
rod and a mathematical lower rod (see Fig.  11), we 
recover the standard Ziegler pendulum with just a 
constant correction on the coefficient A22 , that is 
( mU = mA)

Conversely, for a Ziegler pendulum with a math-
ematical upper rod and a physical lower rod (see 
Fig.  12), we recover the physical Ziegler pendulum 
with just a constant correction on the coefficient A22 , 
that is ( mU = mA)

(29)

A22 = A11 +

(
1

3
mA + mB + mC

)
l2
2
− 2Δl2 cos�2.

(30)

A22 = mUl
2

2
+

mD

4

(
4l2

2
+ (l1 − l3)

2

)
− mDl2(l1 − l3) cos�1.

Fig. 10   A Ziegler pendulum with two physical rods (angles 
defined in Fig. 1)

Fig. 11   A Ziegler pendulum with a physical upper rod and a 
mathematical lower rod (angles defined in Fig. 1)
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For both mixed versions the correction does not 
change the formal shape of the equations of motion 
and there are no differences in the qualitative motion 
of the system.

Finally, all these three variants of the Ziegler pen-
dulum (a physical double pendulum and two mixed 
double pendulums) exhibit the same features of the 
standard Ziegler pendulum. This is not surprising, 
since these variants simply change the positions of 
the centers of mass of the two rods without adding 
relevant terms in the equations of motion.

5 � Friction

In this section we analyze the Ziegler pendulum sub-
ject to friction in two possible senses: a viscous fric-
tion that acts on the three material points and a fric-
tion force that acts on the pins of the pendulum being 
opposite to the rotation.

5.1 � Stokes friction

Let’s consider a friction force that follows

that is, with a proper dimensional choice for � , the 
Stokes law for the friction due to a viscous fluid 
(e.g. the air). From a physical point of view, the 
presence of three friction coefficients corresponds 

(31)A = −�v, � ≥ 0,

to having three material points made of three differ-
ent materials, or even to have the pendulum located 
in a box with three different separate fluids. We do 
that in order to consider the most general perturba-
tion to the dynamical system; a realistic model can be 
obtained for example by equating all the three friction 
coefficients.

In order to calculate the generalized force associated 
to the friction (31), we consider the following Rayleigh 
dissipation function

Since

the components of the generalized force associated to 
A are given by

and the Euler–Lagrange equations become

By recalling (1a), (1b) and (1c), the following Ray-
leigh function and generalized forces are associated 
to the friction acting on A

 to the friction acting on B

(32)R ∶=
1

2
�v2 ⟹ A = −∇

v
R.

(33)
𝜕v

𝜕𝜑̇j

=
𝜕r

𝜕𝜑j

,

(34)Qj = −
𝜕R

𝜕𝜑̇j

(35)
d

dt

(
𝜕L

𝜕𝜑̇j

)
−

𝜕L

𝜕𝜑j

+
𝜕R

𝜕𝜑̇j

= 0.

(36)RA =
1

2
𝜇Al

2

2
𝜑̇2

2
,

(37a)QA
1
= 0

(37b)QA
2
= −𝜇Al

2

2
𝜑̇2,

(38)

RB =
1

2
𝜇B

(
l2
2
𝜑̇2

2
+ l2

1
(𝜑̇1 + 𝜑̇2)

2 − 2l1l2𝜑̇2(𝜑̇1 + 𝜑̇2) cos𝜑1

)
,

(39a)QB
1
= −𝜇B

(
l2
1
(𝜑̇1 + 𝜑̇2) − l1l2𝜑̇2 cos𝜑1

)

Fig. 12   A Ziegler pendulum with a mathematical upper rod 
and a physical lower rod (angles defined in Fig. 1)
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 and to the friction acting on C

 The terms Aij in the equations of motion still follow 
the (6), while r1,2 earn some terms due to the presence 
of frictions 

 We point out that the presence of a general friction 
does not re-introduce the variable �2 in the equations 
of motion, so that �2 is still cyclic, but this further 
non-conservative force destroys the possible Hamilto-
nian case we had for F = 0.

The symmetry of the problem is clearly visible, 
since the friction coefficients introduce terms analo-
gous to A11 , Δ and M, with the mass mj replaced by 
�j . In particular we observe that a term �Bl1 − �Cl3 
arises in the parameters r1,2 , formally equal to Δ . We 
therefore define

and require that Δ = Δ� = 0 , so that 

(39b)

QB
2
= −𝜇B

(
l2
1
(𝜑̇1 + 𝜑̇2) + l2

2
𝜑̇2 − l1l2(𝜑̇1 + 2𝜑̇2) cos𝜑1

)
,

(40)

RC =
1

2
𝜇C

(
l2
2
𝜑̇2

2
+ l2

3
(𝜑̇1 + 𝜑̇2)

2 + 2l2l3𝜑̇2(𝜑̇1 + 𝜑̇2) cos𝜑1

)
,

(41a)QC
1
= −𝜇C

(
l2
3
(𝜑̇1 + 𝜑̇2) + l2l3𝜑̇2 cos𝜑1

)

(41b)

QC
2
= −𝜇C

(
l2
3
(𝜑̇1 + 𝜑̇2) + l2

2
𝜑̇2 + l3l2(𝜑̇1 + 2𝜑̇2) cos𝜑1

)
.

(42a)

r1 = − k1𝜑1 + Δl2𝜑̇
2

2
sin𝜑1 − (𝜇Bl

2

1
+ 𝜇Cl

2

3
)(𝜑̇1 + 𝜑̇2)+

+ (𝜇Bl1 − 𝜇Cl3)l2𝜑̇2 cos𝜑1,

(42b)

r2 = − Δl2𝜑̇1(𝜑̇1 + 2𝜑̇2) sin𝜑1 − Fl2 sin𝜑1

− (𝜇Bl
2

1
+ 𝜇Cl

2

3
)(𝜑̇1 + 𝜑̇2)

+ (𝜇Bl1 − 𝜇Cl3)l2(𝜑̇1 + 2𝜑̇2) cos𝜑1

− (𝜇A + 𝜇B + 𝜇C)l
2

2
𝜑̇2.

(43)

A11� ∶= �Bl
2

1
+ �Cl

2

3

M� ∶= �A + �B + �C

A22� ∶= A11� +M�l
2

2

Δ� ∶= �Bl1 − �Cl3

(44a)A11 = A12 = A21 = mBl
2

1
+ mCl

2

3

 The equations of motion become 

 If we subtract the first equation from the second one 
we get

If the following condition on the coefficients

holds, a �2-independent equation can be extracted 
from the system, by substituting the (46) in the first 
equation of (45)

that is the equation of a one-dimensional damped har-
monic oscillator. We then substitute the previous one 
in the second equation of (45) to get

and the system given by Eqs. (48) and (49) is for-
mally integrable.

In Fig.  13 is shown the expected spiral motion, 
that is the system has an attractive point. In the case 
of breaking of the three symmetries considered 
above, i.e. Δ = Δ� = 0 and (47), also limit cycles 
can arise, as shown in Fig. 14 and 15; furthermore, 
the approaching to the attractive point can be unu-
sual, as shown in Fig. 16.

(44b)A22 = A11 +Ml2
2

(44c)r1 = −k1𝜑1 − A11𝜇(𝜑̇1 + 𝜑̇2)

(44d)r2 = −Fl2 sin𝜑1 − A11𝜇(𝜑̇1 + 𝜑̇2) −M𝜇l
2

2
𝜑̇2.

(45a)A11(𝜑̈1 + 𝜑̈2) = −k1𝜑1 − A11𝜇(𝜑̇1 + 𝜑̇2)

(45b)
A11�̈1 + (A11 +Ml22)�̈2

= −Fl2 sin�1 − A11�(�̇1 + �̇2) −M�l22�̇2.

(46)Ml2
2
𝜑̈2 = k1𝜑1 − Fl2 sin𝜑1 −M𝜇l

2

2
𝜑̇2.

(47)
A11

M
=

A11�

M�

(48)

𝜑̈1 = −
k1

Ml2
2

(
1 +

Ml2
2

A11

)
𝜑1 −

F

Ml2
sin𝜑1 −

A11𝜇

A11

𝜑̇1,

(49)𝜑̈2 =
k1

Ml2
2

𝜑1 −
F

Ml2
sin𝜑1 −

A22𝜇

A22

𝜑̇2
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5.2 � Friction on the pins

Let us now consider two friction forces generated 
on the pins O and A represented by

(50)A = −𝜇𝜑̇𝜑̂, 𝜇 ≥ 0

that resuly in adding a torque opposite to the rotation 
of the system. The friction on the pin O acts on the 
rod OA , so it acts on the point A; the friction on the 
pin A acts on the rod BC , so it acts on the center of 
mass of the material points B and C. In this case it 
is more useful to calculate the generalized forces by 
using the definition.

We calculate the generalized force associated to the 
friction acting on the pin O

 and the generalized force associated to the friction 
acting on the pin A

(51)AO = −𝜇O𝜑̇2𝜑̂2 = −𝜇O𝜑̇2

(
− sin𝜑2

cos𝜑2

)
,

(52a)QO
1
= AO ⋅

�rA

��1

= 0

(52b)QO
2
= AO ⋅

𝜕rA

𝜕𝜑2

= 𝜇Ol2𝜑̇2 cos(2𝜑2)

(53)AA = −𝜇A𝜑̇1𝜑̂1 = −𝜇A𝜑̇1

(
− sin(𝜑1 + 𝜑2)

cos(𝜑1 + 𝜑2)

)
,

(54)

rBC =
mBrB + mCrC

mB + mC

=

(
l2 cos�2 −

Δ

mB+mC

cos(�1 + �2)

−l2 sin�2 +
Δ

mB+mC

sin(�1 + �2)

)
,

Fig. 13   Attractive point in presence of Stokes friction, Δ = 0 , 
Δ� = 0 and A11

M
=

A11�

M�

 . Parameters: mA = 1 , mB = 2 , mC = 1 , 
l1 = 1 , l2 = 1 , l3 = 2 , k1 = 2 , F = 10 , �A = 0.5 , �B = 1 , 
�C = 0.5 . Initial conditions: �1(0) = � , �2(0) = 0 , 
v1(0) = v2(0) = 0

Fig. 14   Limit cycle in presence of Stokes friction, Δ ≠ 0 , 
Δ� ≠ 0 and A11

M
≠ A11�

M�

 . Parameters: mA = 1 , mB = 2.5 , mC = 5 , 
l1 = 1 , l2 = 1 , l3 = 2 , k1 = 2 , F = 10 , �A = 0.4 , �B = 2 , 
�C = 0 . Initial conditions: �1(0) = � , �2(0) = 0 , 
v1(0) = v2(0) = 0

Fig. 15   Limit cycle in presence of Stokes friction, Δ ≠ 0 , 
Δ� ≠ 0 and A11

M
≠ A11�

M�

 . Parameters: mA = 1 , mB = 2.5 , mC = 5 , 
l1 = 1 , l2 = 2 , l3 = 2 , k1 = 2 , F = 10 , �A = 0.4 , �B = 2 , 
�C = 0.5 . Initial conditions: �1(0) = � , �2(0) = 0 , 
v1(0) = v2(0) = 0
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 The equations of motion change as follows: the terms 
Aij still follow the (6), while r1,2 earn some terms due 
to the presence of frictions 

(55a)

QA
1
= AA ⋅

𝜕rBC

𝜕𝜑1

= −
𝜇AΔ

mB + mC

𝜑̇1 cos(2𝜑1 + 2𝜑2)

(55b)

QA
2
= AA ⋅

𝜕rBC

𝜕𝜑2

= −𝜇A𝜑̇1

(
− l2 cos(𝜑1 + 2𝜑2)

+
Δ

mB + mC

cos(2𝜑1 + 2𝜑2)

)
.

(56a)

r1 = −k1𝜑1 + Δl2𝜑̇
2

2
sin𝜑1 −

𝜇AΔ

mB + mC

𝜑̇1 cos(2𝜑1 + 2𝜑2)

(56b)

r2 = − Δl2�̇1(�̇1 + 2�̇2) sin�1

− Fl2 sin�1 + �Ol2�̇2 cos(2�2)+

+ �Al2�̇1 cos(�1 + 2�2)

−
�AΔ

mB + mC
�̇1 cos(2�1 + 2�2).

 In this case there’s no way to obtain the previous 
integrable cases, so we may expect that the system 
shows a chaotic behavior, with the holding or the 
breaking of the known symmetries.

Anyway it could be interesting to analyze the 
behavior of the system under a progressive breaking 
of the symmetry Δ = 0 ; we will do that by holding 
fixed the initial conditions and all the parameters 
except for mB , that will be progressively increased. 
As shown in Fig. 17a, with the holding of the sym-
metry the motion starts from the initial point and 
seems trying to build a limit cycle that expands 
more and more, up to generate irregular motion. 
A first small breaking of the symmetry, shown in 
Fig.  17b, gives rise to a very different behavior; 
in particular the chaotic motion accumulates on 
pseudo-spherical shapes, symmetric with respect 
to the axis �1 = 0 . This behavior is mixed with the 
previous one under a further increasing of Δ , as 
shown in Fig. 17c. Notice that this pseudo-spherical 
shape has been already found in [6], for a general 
non-integrable case of the system. By increasing Δ , 
as shown in Fig.  17d, the system seems again try-
ing to build limit cycles that expand as the time 

Fig. 16   "Jumping" motion 
approaching to an attrac-
tive point in presence of 
Stokes friction; two zooms 
up to a scale of 10−5 are 
shown. Parameters: mA = 1 , 
mB = 1.5 , mC = 1 , l1 = 1.1 , 
l2 = 3 , l3 = 1 , k1 = 4 , 
F = 10 , �A = 0.5 , �B = 0.5 , 
�C = 0.5 . Initial condi-
tions: �1(0) = � , �2(0) = 0 , 
v1(0) = v2(0) = 0
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increases, but in a more complex way, while the 
oscillations of the motion are now more visible. A 
further increase of Δ gives rise again to a mixed 
behavior, shown in Fig. 17e; we have now a pseudo-
cyclic limit interrupted by the presence of two new 
chaotic orbits, similar to the previous ones.

The simulations shown in Fig.  17 suggest that, 
for relatively small breaking of the symmetry Δ = 0 , 
the system mixes two different behaviors: a phase in 
which it tries to build limit cycles that expand as the 
time increase, and a phase in which the completely 
chaotic motion is dominant and it accumulates on a 
well defined pseudo-spherical shape. This behavior 

is confirmed even if we increase Δ (i.e. mB for our 
considerations) up to relatively large values; the sys-
tem keeps to mix the two previous behaviors, with 
the chaotic orbit that moves along the �1-axis and the 
possible rising of a second smaller chaotic orbit, even 
if this progressively leads to a deformation of the 
pseudo-spherical shape.

A further suggested interpretation is the follow-
ing: from Fig.  17b, c, we see that the motion accu-
mulates on a symmetrical shape, by going from one 
side to the other (for a sufficiently large number of 
iterations we would see that in Fig. 17c the right side 
will be filled). This back and forth motion reminds 

Fig. 17   Progressive 
breaking of the sym-
metry Δ = 0 . Param-
eters: mA = 1 , mC = 1 , 
l1 = 1 , l2 = 1 , l3 = 1 , 
k1 = 2 , F = 10 , �O = 1 , 
�A = 2 . Initial conditions: 
�1(0) = � , �2(0) = 0 , 
v1(0) = v2(0) = 0
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the Lorenz strange attractor [20], and the fact that 
this finite portion of the phase space is recurrent for 
several choices of the parameters could suggest the 
presence of a strange attractor for the Ziegler pendu-
lum; the appearence of this attractor is actually differ-
ent from the usual one, since the motion is not totally 
accumulated on it, as is (for instance) for the Lorenz 
attractor.

Let us now briefly look for an estimate of the 
threshold values of the friction coefficients for the 
transition to chaos. If we set F = 0 and �O = �A = 0 , 
we of course obtain the integrable Hamiltonian case 
studied in [6] and the related periodic orbits. By 

keeping F = 0 , as shown in Fig.  18a, a small value 
for �O and �A is sufficient to transform the periodic 
orbit in a quasi-periodic motion, then the system 
passes through several phases, more or less chaotic; 
in particular, as �O and �A increase, the initial closed 
orbit is split in several and more complex semi-orbits, 
up to the fast rising of an effective chaotic motion. 
The value �O = �A = 0.59 can be seen as a threshold 
value for the system, in the sense that it distinguishes 
between an approximately regular motion (Fig.  18a, 
b) and an effective chaotic motion (Fig. 18d–f). Fur-
thermore, a comparison between the Lyapunov expo-
nents associated to the different choices of parameters 

Fig. 18   Progressive 
rising of friction on the 
pins. Parameters: mA = 1 , 
mB = 2 , mC = 1 , l1 = 1 , 
l2 = 1 , l3 = 1 , k1 = 2 , 
F = 0 . Initial conditions: 
�1(0) = � , �2(0) = 0 , 
v1(0) = v2(0) = 0
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suggests to interpret this value as related to a maximal 
chaotic orbit; indeed a Lyapunov exponent ��1

∼ 0.25 
is associated to the case �O = �A = 0.59 , while a 
smaller value is related to lesser and greater friction 
coefficients.

6 � A discrete version

In this section we consider a discrete version of the 
equations of motion (9). For simplicity, we rename 
the canonical variables as (�1, p1,�2, p2) ↦ (x, y, z,�) 
and the parameters as 

 with a > 0 , b > 0 ; in this way we preserve the physi-
cal meaning of the equations. A discrete version of 
the system (9) can be obtained by simply replacing 
the derivatives with respect to time with the (n + 1)-th 
term in the sequences, that is we define a map

such that 

(57a)A11 ↦ a

(57b)A12 ↦ a − Δ cos x

(57c)A22 ↦ a + b − 2Δ cos x

(57d)r1 ↦ −k1x + Δ�2 sin x

(57e)r1 ↦ −k2y − Δy(y + 2�) sin x − c sin x,

(58)
f ∶ ℝ

4
→ ℝ

4

xn+1 = f (xn), n ∈ ℕ

(59a)xn+1 = yn

(59b)

yn+1 = − (a + b)k1xn + ak2zn

+ [(a + b)Δ�2
n + aΔyn(yn + 2�n) + ac] sin xn+

+ (2k1xn − k2zn)Δ cos xn−

− [2Δ�2
n + Δyn(yn + 2�n) + c]Δ sin xn cos xn

(59c)zn+1 = �n

(59d)

�n+1 =ak1xn − ak2zn − [aΔ�2

n
+ aΔyn(yn + 2�n) + ac] sin xn−

− k1Δxn cos xn + Δ2�2

n
sin xn cos xn,

 where all the variables of the system are defined on 
the entire real set. The constraint Δ = 0 , that rep-
resents a non-Hamiltonian integrable case for the 
standard Ziegler pendulum, is again a symmetry that 
simplifies the system; in this case the equations (59) 
become 

 and they are well defined ∀(x, y, z,�) ∈ ℝ
4 , since we 

imposed a > 0, b > 0 from the beginning. We now 
look for fixed and periodic points of the map (60) 
in the attempt to prove that the discrete map associ-
ated to the Ziegler pendulum is chaotic in the sense 
of Devaney, i.e. it is topologically transitive and has a 
dense set of periodic points ( [16, 17]).

Before going through the calculations, we com-
pute the Jacobian associated to the system (60)

that has determinant

so it is contractive if k1k2 < ab , conservative if 
k1k2 = ab and expansive if k1k2 > ab . The eigenval-
ues of J satisfy

In the sequel the variable written without index is 
automatically taken as the n-th term of the sequence, 
that is xn =∶ x , yn =∶ y , etc.

(60a)xn+1 = yn

(60b)yn+1 =
1

ab
[−(a + b)k1xn + ak2zn + ac sin xn]

(60c)zn+1 = �n

(60d)�n+1 =
1

ab
[ak1xn − ak2zn − ac sin xn]

(61)J =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

−
a+b

ab
k1 +

c

b
cos xn 0

k2

b
0

0 0 0 1
k1

b
−

c

b
cos xn 0 −

k2

b
0

⎞⎟⎟⎟⎟⎠

(62)|J| = k1k2

ab
,

(63)

�4 + �2
(
k2

b
+

a + b

ab
k1 −

c

b
cos xn

)
=

k2

b

(
−

a + b

ab
k1 +

k1

b

)
.
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6.1 � Fixed points

We look for the fixed points of the map (60), that is 
xn+1 = xn , etc. A trivial one is (0, 0, 0, 0), while for a 
generic fixed point we have 

Proposition 1  The set of fixed points of the map (60) 
is not dense in ℝ4.

Proof  The fixed points of the map (60) solve the 
(64), that is 

 By summing the (65a) and the (65b) we obtain

that replaced in the original system returns

where 𝛼 > 0 ; so a generic fixed points of the map (60) 
is given by

where x̃(𝛼) is one solution of the (67) for a given 
value of � and 𝛽 ∶= −

k1+a

a
< 0.

If we restrict ourselves on the interval x ∈ [−�,�] , 
the (67) has the only solution x = 0 if � ≥ |c| , while it 
admits the solution x = 0 and two non null symmetric 
solutions if 𝛼 < |c| , that is

(64a)y = x

(64b)− (a + b)k1x + ak2z + ac sin x = aby

(64c)
� = z

(64d)ak1x − ak2z − ac sin x = ab�.

(65a)− (a + b)k1x + ak2z + ac sin x = abx

(65b)ak1x − ak2z − ac sin x = abz.

(66)z = −
k1 + a

a
x,

(67)sin x =
[b(k1 + a) + ak1 + k2(k1 + a)]

ac
x =∶

�

c
x,

(68)(x0, y0, z0,𝜔0) = x̃(𝛼)(1, 1, 𝛽, 𝛽),

(69)b(k1 + a) + ak1 + k2(k1 + a) < |c|.

By extending the domain to x ∈ [−n�, n�] with 
n ∈ ℕ , we have that for a sufficiently small value of 
� the (67) admits an odd number of solutions, more 
and more large as � is close to zero; indeed x = 0 is 
always a solution of (67), while if x ≠ 0 is a solution, 
then −x is a solution too, thanks to the odd symmetry 
of the sine function. Therefore we can write the set of 
fixed points of the map (60) for a certain choice on � 
as follows

Since 𝛼 > 0 , (70) is always a finite set of points. For 
a certain value of � , the closure of U is equal to the 
closed interval that joins the smallest and largest solu-
tions of (67); therefore U ≠ ℝ

4 and U is not dense for 
any 𝛼 > 0 . 	�  ◻

Disregarding for a moment the original domains 
we imposed for the parameters, we have the 
following.

Corollary 1  The set of fixed points of the map (67) 
is not dense in ℝ4 for any real value of the parameters.

Proof  Proposition 1 is symmetrically generalizable 
for 𝛼 < 0 . For � = 0 and remembering (70), the set of 
fixed points of the map (60) is given by

The points of U are uniquely defined by the real 
number x̃ , so it is sufficient to find an open interval 
of ℝ that contains x̃ but does not contain 𝛽x̃ ; further-
more, it is sufficient to find this interval for just one 
point of U. A trivial choice for k = 0 is I = (0, 2x̃) if 
x̃ > 0 , I = (−2x̃, 0) if x̃ < 0 or I = (−�, �) with 𝜀 < 𝜋 
if x̃ = 0 ; in any case there exists an open set that does 
not intersect U, therefore U is not dense. 	�  ◻

As an example we briefly discuss the stability of 
the fixed points through the following numerical 
example. If we put

(70)U(𝛼) =

{
x̃(𝛼)(1, 1, 𝛽, 𝛽)

}

sin(x̃(𝛼))=𝛼x̃(𝛼)

.

(71)U(0) =

{
2k�(1, 1, �, �)

}

k∈ℤ

.

(72)
a = b = 1

k1 = k2 = 0.5

c = 3
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the (69) holds and the system (60) admits the follow-
ing fixed points

We can easily establish the stability of these fixed 
points is verified by substituting in the (63) the previ-
ous values for the parameters, to get

The fixed point associated to x = 0 has four real 
eigenvalues and two of them have magnitude greater 
than one, so it is a hyperbolic point; the two fixed 
points associated to x = ±0.71623935 have instead 
four complex eigenvalues, so they are not hyperbolic. 
Notice that the parity of the cosine in the (63) ensures 
us that the two symmetric fixed points have always 
the same stability.

We consider the density of the set of the fixed 
points since, as we will see, it is strongly suggested 
that the sets of periodic points of the map can be gen-
erally reduced to the set (70), so that from Proposi-
tion 1 immediately follows that the map (60) is not 
chaotic in the sense of Devaney for any choice of the 
parameters.

6.2 � Periodic points of period 2

We look for the 2-periodic points of the map (60), 
that is xn+2 = xn , etc. We have 

Proposition 2  The set of 2-periodic points of the 
map (60) is not dense in ℝ4.

(73)(0, 0, 0, 0); ± 0.71623935

(
1, 1,−

3

2
,−

3

2

)
.

(74)4�4 − 12�2
(
cos xn −

1

2

)
+ 1 = 0.

(75a)

xn+2 = yn+1 =
1

ab

{
− (a + b)k1xn + ak2zn + ac sin xn

}
= xn

(75b)

yn+2 =
1

ab

{
− (a + b)k1xn+1 + ak2zn+1 + ac sin xn+1

}
= yn

(75c)

zn+2 = �n+1 =
1

ab

{
ak1xn − ak2zn − ac sin xn

}
= zn

(75d)

�n+2 =
1

ab

{
ak1xn+1 − ak2zn+1 − ac sin xn+1

}
= �n.

Proof  We substitute the terms xn+1 = yn , zn+1 = �n 
in the (75), to get 

 By summing the (76a) and the (76c) and summing 
the (76b) and the (76d) we obtain 

 that is we get exactly the set (70), that has been 
shown to be not dense; so the map (60) has not a 
dense set of 2-periodic points. 	�  ◻

6.3 � Periodic points of period 3 and conjecture

We now look for the 3-periodic points of the map 
(60), that is xn+3 = xn , etc. We have 

Proposition 3  The set of 3-periodic points of the 
map (60) is not dense in ℝ4.

Proof  We substitute the terms xn+1 = yn , zn+1 = �n 
and xn+2 = yn+1 , zn+2 = �n+1 in the (78), to get 

(76a)− (a + b)k1x + ak2z + ac sin x = abx

(76b)− (a + b)k1y + ak2� + ac sin y = aby

(76c)ak1x − ak2z − ac sin x = abz

(76d)ak1y − ak2� − ac sin y = ab�.

(77a)z = −
k1 + a

a
x

(77b)� = −
k1 + a

a
y,

(78a)xn+3 = yn+2 = 1
ab

{

− (a + b)k1xn+1 + ak2zn+1 + ac sin xn+1
}

= xn

(78b)

yn+3 =
1

ab

{
− (a + b)k1xn+2 + ak2zn+2 + ac sin xn+2

}
= yn

(78c)

zn+3 = �n+2 =
1

ab

{
ak1xn+1 − ak2zn+1 − ac sin xn+1

}
= zn

(78d)

�n+3 =
1

ab

{
ak1xn+2 − ak2zn+2 − ac sin xn+2

}
= �n.



Meccanica	

1 3
Vol.: (0123456789)

 By summing and subtracting the (79a) and the (79c) 
we obtain 

 We can finally explicit yn+1 and �n+1 in (79b) and 
(79d), substitute the previous constraints and get 

 where A,… ,F are constants (that depend on the 
usual parameters) and P(x, z), Q(x, z) are polynomial 
functions.

Regardless the specific form of the system, we 
have the following set of 3-periodic points:

where (x̃, z̃) are solutions of the (81) and ỹ , 𝜔̃ are 
obtained from the (80), for a certain choice of the 
parameters. Once we take a proper redefinition of the 
sine’s arguments, we get for the 3-periodic points an 
equation analogous to (67); therefore we can general-
ize the Proposition 1 to this case and conclude that 
the set of 3-periodic points is not dense in ℝ4 . 	
� ◻

Given the previous results, we are in position to pro-
pose the following.

(79a)− (a + b)k1yn + ak2�n + ac sin yn = abxn

(79b)− (a + b)k1yn+1 + ak2�n+1 + ac sin yn+1 = abyn

(79c)ak1yn − ak2�n − ac sin yn = abzn

(79d)ak1yn+1 − ak2�n+1 − ac sin yn+1 = ab�n.

(80a)− k1y = a(x + z)

(80b)k2� = −(a + 2b)z − ax − c sin

[
−

a

k1
(x + z)

]
.

(81a)P(x, z) + A sin x + B sin

[
P(x, z) + A sin x

]
= 0

(81b)

Q(x, z) + C sin x + D sin

[
Q(x, z) + C sin x

]
= E sin

[
F(x + z)

]
,

(82)U =

{(
x̃, ỹ(x̃, z̃), z̃, 𝜔̃(x̃, z̃)

)}
,

Proposition 4  (conjectured) The map (60) has not a 
dense set of periodic points.

The validity of the previous conjecture is suggested 
by the fact that, by increasing the period of the periodic 
points, we get a series of concatenate sine functions, 
so that the previous considerations can be extended 
to an arbitrary period. If the Proposition 4 is true, the 
map (60) is not chaotic in the sense of Devaney for a 
choice of parameters ( k2 ≠ 0 ) that has been numeri-
cally proven as a general case of chaotic motion for the 
Ziegler pendulum. Anyway, there is no reason for the 
regular or chaotic behavior to be preserved by passing 
from the continuous version to a discrete version of a 
specific dynamical system, or viceversa. As an exam-
ple, the logistic map [21] shows the opposite behavior, 
since the original discrete system shows a very chaotic 
behavior for a certain choice of the parameter, as one 
can see from the associated bifurcation diagram, while 
its continuous version is a simple ordinary equation 
with simple and regular solutions.

We may ask ourselves whether the discrete map 
associated to the Ziegler pendulum is chaotic in the 
sense of Devaney if we add a dissipative force in the 
equations, for instance the terms associated to the fric-
tion on the pins. Assuming as before Δ = 0 and with a 
proper redefinition of the parameters, the equations for 
the discrete system become 

 that is we modify the original equations (60) by add-
ing the same term in the sequence defining yn (with a 
negative sign) and in the sequence defining �n (with 
a positive sign). It is not difficult to see that this sym-
metry in the equations allows us to generalize all the 
previous considerations. Given that, regardless an 
explicit study of this case, we can conjecture that also 

(83a)xn+1 = yn

(83b)
yn+1 =

1

ab

[
−(a + b)k1xn + ak2zn + ac sin xn−

−a�O� cos(2zn) − a�Ay cos(xn + 2zn)
]

(83c)zn+1 = �n

(83d)

�n+1 =
1

ab
[ak1xn − ak2zn − ac sin xn + a�O� cos(2zn)

+ a�Ay cos(xn + 2zn)],
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the map (83) is not chaotic in the sense of Devaney, 
since it has the same identical set of fixed points and 
similar sets of periodic points when compared with 
the map (60).

7 � Conclusion

In this paper we studied the dynamics of a general-
ized Ziegler pendulum, when subject to further exter-
nal forces, both potential and non-potential.

We found that, in general, the presence of gravity 
destroys the integrability of the system that is pre-
sent in the original dynamical system if two specific 
symmetries on the parameters hold, even if isolated 
periodic orbits can be found for certain choices of 
parameters and initial conditions. By adding instead 
a further elastic potential energy that preserves the 
cyclicity of one of the two generalized coordinates, 
the integrable cases of the original system survive, so 
that closed trajectories and families of periodic solu-
tions arise. The physical version of the system does 
not suggest any relevant considerations, that is the 
regular or chaotic behavior of the system is essen-
tially the same as if we consider a mathematical, 
physical or mixed double pendulum.

An interesting behavior is observed if the system is 
subject to a dissipative force. In the case of fluid-like 
friction we found a specific symmetry on the friction 
coefficients under which the system admits attractive 
points, while in general it approaches to limit cycles. 
Another formulation of dissipative force has been 
studied, by considering torsional friction forces 
on the pendulum pins. By numerically studying 
a progressive breaking of the non-Hamiltonian 
symmetry Δ = 0 , we observe the emergence of a 
possible strange attractor, that seems to arise in a 
different way if compared with the strange attractors 
such as the Lorenz attractor. Furthermore, a brief 
study of the transition to chaos has been performed, 
with the aim of finding a threshold value for the 
friction coefficients able to distinguish between an 
approximately regular motion and chaotic orbits.

Finally, we found that the discrete map associated 
to the Ziegler pendulum, if the non-Hamiltonian 
symmetry Δ = 0 holds, does not have dense sets of 
periodic points up to period 3. A qualitative analysis 
of the periodic points suggests that the map, with this 

constraint, is not chaotic in the sense of Devaney, for 
a choice of parameters that corresponds generally to 
chaotic orbits for the continuous Ziegler pendulum.

The original Ziegler pendulum introduced in [1] 
has found several applications in the last decades. 
The variants analyzed in this work, in particular the 
one that takes into account the presence of friction on 
the pins, may be considered as more realistic models 
in order to improve the mechanical and engineering 
applications of this dynamical system; furthermore, 
the occurrence of a limit cycle in presence of fluid-
like friction may be taken into account for further 
studies on optimization and control of the system. 
Finally, the results here presented relating the dis-
crete map associated to the dynamical system may be 
developed to further analyze the definition of chaos in 
the sense of Devaney.

In view of possible future developments several 
questions can now be asked.

•	 Given the nature of the sets of periodic points, 
it should be possible, even if not necessary easy, 
to prove the Proposition 4 by induction on the 
period; the main difficulty is related to the quite 
complex form associated to the equations solved 
by the k-periodic points for periods k > 2.

•	 For all the variants considered, it is evident that 
the non-Hamiltonian symmetry Δ = 0 plays a fun-
damental role in the distinction between regular 
and chaotic motion, but the reason is not trivial.

•	 We may wonder why we have a periodic orbit in 
presence of gravity for the choices of parameters 
shown in Fig.  3; for these considerations a deep 
study of the applications of KAM theory for this 
specific dynamical system could be considered.

•	 The presence of dissipative forces on the pins 
seems to give rise to a strange attractor, at least for 
a specific choice of parameters; in order to state 
this in a rigorous way, an extensive and detailed 
numerical study for several values of parameters 
and initial conditions must be performed.

•	 Since the Hamilton equations of the standard 
Ziegler pendulum present a periodic generalized 
force, the Poincaré–Mel’nikov method [22, 23] 
can be applied to the system, in order to verify in 
different fashion the chaotic behavior of the sys-
tem with the breaking of the mentioned symme-
tries.
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