The dynamic behaviour of cam-follower systems for automotive applications is investigated. This mechanism is modelled by means of a SDOF scheme, capable of capturing the fundamentals of the problem, considering external excitation, loss of contact and parametric excitation due to contact stiffness variation. The main novelty pertains to the qualitative characterization of the dynamic behaviour of cam-follower systems by means of continuation analysis considering both loss of contact and parametric excitation. Moreover, to the best knowledge of the authors, for the first time emphasis has been devoted to the evaluation and identification of the different internal and external forcing terms and their effect on the dynamic response and stability of the system. A parametric study is reported in the form of response diagrams to show how the variation of key parameters, such as stiffness and damping, influences the system behaviour. Numerical results obtained by direct integration of the equation of motion are presented, demonstrating the existence of rich dynamics in the examined system. Finally, the actual dynamic loads are exhibited for different system modelling complexities, highlighting the necessity for the followed approach.
Continuation analysis of cam-follower mechanisms considering time-varying stiffness and loss of contact
Natali, C
Primo
;Battarra, MSecondo
;
2023
Abstract
The dynamic behaviour of cam-follower systems for automotive applications is investigated. This mechanism is modelled by means of a SDOF scheme, capable of capturing the fundamentals of the problem, considering external excitation, loss of contact and parametric excitation due to contact stiffness variation. The main novelty pertains to the qualitative characterization of the dynamic behaviour of cam-follower systems by means of continuation analysis considering both loss of contact and parametric excitation. Moreover, to the best knowledge of the authors, for the first time emphasis has been devoted to the evaluation and identification of the different internal and external forcing terms and their effect on the dynamic response and stability of the system. A parametric study is reported in the form of response diagrams to show how the variation of key parameters, such as stiffness and damping, influences the system behaviour. Numerical results obtained by direct integration of the equation of motion are presented, demonstrating the existence of rich dynamics in the examined system. Finally, the actual dynamic loads are exhibited for different system modelling complexities, highlighting the necessity for the followed approach.File | Dimensione | Formato | |
---|---|---|---|
0065d28e-15d8-4c4f-ada0-05d9179c5894.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.