The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app.

Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app

Bonini, M;Papi, A;
2023

Abstract

The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app.
2023
Bousquet, J; Sousa-Pinto, B; Anto, J M; Amaral, R; Brussino, L; Canonica, G W; Cruz, A A; Gemicioglu, B; Haahtela, T; Kupczyk, M; Kvedariene, V; Laren...espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2531043722002525-main.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 574.78 kB
Formato Adobe PDF
574.78 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2517351
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact