We give algorithms to compute decompositions of a given polynomial, or more generally mixed tensor, as sum of rank one tensors, and to establish whether such a decomposition is unique. In particular, we present new methods to compute the decomposition of a general plane quintic in seven powers, and of a general space cubic in five powers; the two decompositions of a general plane sextic of rank nine, and the five decompositions of a general plane septic. Furthermore, we give Magma implementations of all our algorithms.
Decomposition Algorithms for Tensors and Polynomials
Massarenti A.
Secondo
;
2023
Abstract
We give algorithms to compute decompositions of a given polynomial, or more generally mixed tensor, as sum of rank one tensors, and to establish whether such a decomposition is unique. In particular, we present new methods to compute the decomposition of a general plane quintic in seven powers, and of a general space cubic in five powers; the two decompositions of a general plane sextic of rank nine, and the five decompositions of a general plane septic. Furthermore, we give Magma implementations of all our algorithms.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Alex_Antonio_Rick_SIAGA.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.67 MB
Formato
Adobe PDF
|
2.67 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2107.04097v1.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
294.98 kB
Formato
Adobe PDF
|
294.98 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.