We give algorithms to compute decompositions of a given polynomial, or more generally mixed tensor, as sum of rank one tensors, and to establish whether such a decomposition is unique. In particular, we present new methods to compute the decomposition of a general plane quintic in seven powers, and of a general space cubic in five powers; the two decompositions of a general plane sextic of rank nine, and the five decompositions of a general plane septic. Furthermore, we give Magma implementations of all our algorithms.

Decomposition Algorithms for Tensors and Polynomials

Massarenti A.
Secondo
;
2023

Abstract

We give algorithms to compute decompositions of a given polynomial, or more generally mixed tensor, as sum of rank one tensors, and to establish whether such a decomposition is unique. In particular, we present new methods to compute the decomposition of a general plane quintic in seven powers, and of a general space cubic in five powers; the two decompositions of a general plane sextic of rank nine, and the five decompositions of a general plane septic. Furthermore, we give Magma implementations of all our algorithms.
2023
Laface, A.; Massarenti, A.; Rischter, R.
File in questo prodotto:
File Dimensione Formato  
Alex_Antonio_Rick_SIAGA.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.67 MB
Formato Adobe PDF
2.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2107.04097v1.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 294.98 kB
Formato Adobe PDF
294.98 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2509631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact