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DECOMPOSITION ALGORITHMS FOR TENSORS AND POLYNOMIALS

ANTONIO LAFACE, ALEX MASSARENTI, AND RICK RISCHTER

Abstract. We give algorithms to compute decompositions of a given polynomial, or more generally
mixed tensor, as sum of rank one tensors, and to establish whether such a decomposition is unique.
In particular, we present methods to compute the decomposition of a general plane quintic in seven
powers, and of a general space cubic in five powers; the two decompositions of a general plane sextic
of rank nine, and the five decompositions of a general plane septic. Furthermore, we give Magma
implementations of all our algorithms.
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1. Introduction

Let T be a tensor in a given tensor space over a field K, and consider additive decompositions of
the form

(1.1) T = λ1U1 + ... + λhUh

where the Ui’s are linearly independent rank one tensors, and λi ∈ K∗. The rank of T , denoted by
rk(T ), is the minimal positive integer h such that T admits a decomposition as in (1.1).

Tensor decomposition problems and techniques are of relevance in both pure and applied mathemat-
ics. For instance, tensor decomposition algorithms have applications in psycho-metrics, chemometrics,
signal processing, numerical linear algebra, computer vision, numerical analysis, neuroscience and
graph analysis [BK09], [CM96], [CGLM08], [LO15], [MR13].

We say that a tensor rank-1 decomposition has the generic identifiability property if the expression
(1.1) is unique, up to permutations and scaling of the factors, on a dense open subset of the set
of tensors admitting such an expression. Given a tensor rank-1 decomposition of length h as in
(1.1) the problem of specific identifiability consists in proving that such a decomposition is unique.
Following [COV17a] we call an algorithm for specific identifiability effective if it is sufficient to prove
identifiability on a dense open subset of the set of tensors admitting a decomposition as in (1.1).
Therefore, an algorithm is effective if its constraints are satisfied generically, in other words if the
same algorithm proves generic identifiability as well.

Our aim is to give efficient algorithms to explicitly compute a decomposition as in (1.1) and to
establish whether it is unique. The literature on this subjects is quite vast [CM96], [BCMT10],
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[BB12], [OO13], [COV17a], [Bal19], [AC20], [BT20], [MO20]. The majority of the available algorithms
are based on the notion of eigenvector of a tensor and others deal with tensors of small rank. In this
paper we propose a different approach that can be seen as a generalization of the classical catalecticant
method.

In Section 2 we revise classical methods based on catalecticants and more generally on flattenings.
In Section 3 we introduce our main method for symmetric tensors which we then generalize to the
case of mixed tensors in Section 7. We explain our main idea in the case of symmetric tensors. Let
F ∈ K[x0, . . . , xn]d be a symmetric tensor, that is a homogeneous polynomial, and let Hs

∂F be the linear
subspace of P(K[x0, . . . , xn]d−s) spanned by the partial derivatives of order s of F . The catalecticant
method basically consists in intersecting Hs

∂F with the Veronese variety Vn
d−s parametrizing powers of

linear forms. Indeed, if F admits a decomposition as sum of powers

(1.2) F = λ1Ld
1 + ... + λhLd

h

with Li ∈ K[x0, . . . , xn]1 then all its partial derivatives can be decomposed using the same linear

forms. When Hs
∂F fills the span

〈
Ld−s

1 , . . . , Ld−s
h

〉
the linear forms L1, . . . , Lh can be recovered from

the intersection Hs
∂F ∩ Vn

d−s.
The main novelty in our method is that instead of intersecting with Vn

d−s we consider the intersection

Hs
∂F ∩Sech−Ns

(Vn
d−s), where Ns =

(n+s
s

)−1, and Sech−Ns
(Vn

d−s) is the (h−Ns)-secant variety of Vn
d−s.

Indeed, we prove that the decomposition of F in (1.2) can be reconstructed from such intersection.
For instance, when s = 1 our method works under the following bound

h < Bn,d :=

(d−1+n
n

)
+ n2

n + 1
.

The catalecticant method works at its best for even degree d = 2k under the bound h ≤ (n+k
k

)
.

Note that this binomial coefficients is in general much smaller than Bn,d. The main drawback of our
approach is that equations for secant varieties of Veronese varieties are known in very few cases [LO13].
However, in the cases we were able to check empirically it turned out that the equations for secant
varieties coming from classical flattenings are enough in order to establish whether a decomposition
is unique, and in case to explicitly compute it. Furthermore, for degree two Veronese varieties these
equations are classically known. So, our technique is very effective for computing decompositions
of cubics and more generally ternary tensors. Indeed, out of this method we get an identifiability
criterion for cubics for

(1.3) h <
4n − √

8n + 1 + 3

2

which also allows us to explicitly compute the decomposition. Furthermore, we prove that such
criterion is effective for h ≤ n + 2. In particular, when (n, h) = (3, 5) we prove that the equality in
(1.3) is allowed, and we get a method to compute the decomposition in the Sylvester’s pentahedral
theorem [Syl04].

There are just other two cases in addition to the Sylvester’s pentahedral theorem where a general
polynomial F ∈ C[x0, . . . , xn]d is h-identifiable, namely for n = 1, d = 2m + 1, h = m and n =
2, d = 5, h = 7 [GM19, Theorem 1]. The first proof of the uniqueness of the decomposition in seven
powers of a general plane quintic is due to D. Hilbert [Hil88]. This interesting case is not among the
ones covered by our main method. However, in Section 4 we introduce another technique, bases on
linear projections from spaces spanned by derivatives, which turns out to be effective in Hilbert’s case.
Furthermore, as a variation of this method we give an algorithm to compute the five decompositions
of a general plane septic in twelve powers [Dix07]. Moreover as a combination of our main method in
Section 3 and the concept of star configuration we get a faster algorithm that works when the given
polynomial can be decomposed using linear forms defined over Q.

In Section 5 we consider the subgeneric cases. When h is smaller than the generic rank we
have that a general polynomial F ∈ K[x0, . . . , xn]d of rank h is identifiable except when (n, d, h) ∈
{(2, 6, 9), (3, 4, 8), (5, 3, 9)} and in these three cases there are exactly two decompositions [COV17b,
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Theorem 1.1] which are contained in an elliptic curve. By looking at polynomials of small degree
in the ideal of certain projections of these elliptic curves or of the relevant Veronese varieties we
manage to give non trivial constraints that the decompositions must satisfy. In particular, when
(n, d, h) = (2, 6, 9) we produce an algorithm that successfully computes the two decompositions of a
general plane sextic of rank nine.

In Section 6, plugging-in the concept of variety of sums of powers, we consider the cases when
a homogeneous polynomial admits infinitely many decompositions in h powers. For instance, we
successfully apply this method to plane quartics for h = 6, and to plane sextics for h = 10.

We implemented all our algorithms in Magma [BCP97]. In the following table we list some cases
in which our scripts managed to compute the decompositions:

n d h Algorithms
2 5 ≤ 7 2.3, 4.2
2 6 ≤ 10 2.3, 5.2 and Remark 6.5
2 7 ≤ 12 2.3, 4.9
3 3 ≤ 5 3.5
6 3 ≤ 9 3.5

In Section 7 we extend our main method in Section 3 to mixed tensors. For instance, for Segre products
of type Pn ×Pn ×Pn we get an algorithm that works for h < 2n − √

n + 1 while the classical flattening
method in Section 2 works for h ≤ n + 1.

For example, Algorithm 7.3 successfully computed the decomposition of rank h = 6 tensors in
K5 ⊗ K5 ⊗ K5, and of rank h = 11 tensor in K8 ⊗ Sym2 K8.

Finally, we would like to stress that, since to establish identifiability it is enough to compute the
degree of a 0-dimensional scheme, our algorithms perform much better when just asked to determine
whether a tensor is identifiable. For instance, Algorithms 3.7, 7.3 succeeded in establishing identifia-
bility of rank h = 15 polynomials of degree d = 3 in n + 1 = 10 variables, tensors of rank h = 14 in
K9 ⊗ K9 ⊗ K9, and tensors of rank h = 14 in K9 ⊗ Sym2 K9.

Organization of the paper. The paper is organized as follows. In Section 2 we introduce the
notation and recall the classical catalecticant method. In Section 3 we develop our main method
for computing polynomial decompositions. In Section 4 we introduce techniques, bases on linear
projections and star configurations, to deal with plane quintics and septics. In Section 5, considering
low degree hypersurfaces containing the projections of suitable Veronese varieties and elliptic normal
curves, we introduce techniques to compute the decompositions in the subgeneric cases. For instance,
we give an algorithm to compute the two decompositions of a general plane sextic of rank nine. In
Section 6, we extend our methods to polynomials admitting infinitely many decompositions using the
concept of variety of sums of powers. In Section 7 we describe the natural generalization of our main
method to general tensors. Finally, in Section 8 we explain how our Magma functions work, and we
give some examples on how to use them.

Acknowledgments. We thank Luca Chiantini and Giorgio Ottaviani for helpful comments. The first
named author was partially supported by Proyecto FONDECYT Regular N. 1190777. The second
named author is a member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le
loro Applicazioni of the Istituto Nazionale di Alta Matematica ”F. Severi” (GNSAGA-INDAM).

2. Flattenings and the catalecticant method

Let n = (n1, . . . , np) and d = (d1, . . . , dp) be two p-uples of positive integers. Set

d = d1 + · · · + dp, n = n1 + · · · + np, and N(n, d) =
p∏

i=1

(
ni + di

ni

)
− 1.

Let V1, . . . , Vp be K-vector spaces of dimensions n1 + 1 ≤ n2 + 1 ≤ · · · ≤ np + 1, and consider the
product

Pn = P(V ∗
1 ) × · · · × P(V ∗

p ).
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The line bundle
OPn(d1, . . . , dp) = OP(V ∗

1 )(d1) ⊠ · · · ⊠ OP(V ∗

p )(dp)

induces an embedding

σν
n
d : P(V ∗

1 ) × · · · × P(V ∗
p ) −→ P(Symd1 V ∗

1 ⊗ · · · ⊗ Symdp V ∗
p ) = PN(n,d)−1,

([v1] , . . . , [vp]) 7−→ [vd1
1 ⊗ · · · ⊗ v

dp
p ]

where vi ∈ Vi. We call the image

SVn
d = σν

n
d (Pn) ⊂ PN(n,d)−1

a Segre-Veronese variety. When p = 1, Vn
d := SVn

d is a Veronese variety. In this case we write Vn
d for

SVn
d , and νn

d for the Veronese embedding. When d1 = · · · = dp = 1, Sn := SVn
1,...,1 is a Segre variety.

In this case we write Sn for SVn
1,...,1, and σn for the Segre embedding. Note that

σν
n
d = σn′ ◦

(
νn1

d1
× · · · × ν

np

dp

)
,

where n′ = (N(n1, d1), . . . , N(np, dp)).

Remark 2.1. If a polynomial F ∈ K[x0, ..., xn]d admits a decomposition in h powers then F ∈
Sech(Vn

d ), and conversely a general F ∈ Sech(Vn
d ) can be written as a sum of h powers. If

F = λ1Ld
1 + ... + λhLd

h

is a decomposition then the partial derivatives of order s of F can be decomposed as a linear combi-
nation of Ld−s

1 , ..., Ld−s
h as well.

These partial derivatives are
(n+s

n

)
homogeneous polynomials of degree d−s spanning a linear space

Hs
∂F ⊆ P(K[x0, ..., xn]d−s). Therefore, the linear space

〈
Ld−s

1 , . . . , Ld−s
h

〉
contains Hs

∂F .

2.1. Flattenings. Let V1, . . . , Vp be K-vector spaces of finite dimension, and consider the tensor
product V1 ⊗ ... ⊗ Vp = (Va1 ⊗ ... ⊗ Vas) ⊗ (Vb1 ⊗ ... ⊗ Vbp−s

) = VA ⊗ VB with A ∪ B = {1, ..., p},
A = {a1, . . . , ap} and B = Ac = {b1, . . . , bp−s}. Then we may interpret a tensor

T ∈ V1 ⊗ ... ⊗ Vp = VA ⊗ VB

as a linear map T̃ : V ∗
A → VAc . Clearly, if the rank of T is at most r then the rank of T̃ is at most

r as well. Indeed, a decomposition of T as a linear combination of r rank one tensors yields a linear
subspace of VAc , generated by the corresponding rank one tensors, containing T̃ (V ∗

A) ⊆ VAc . The

matrix associated to the linear map T̃ is called an (A, B)-flattening of T .
In the case of mixed tensors we can consider the embedding

Symd1 V1 ⊗ ... ⊗ Symdp Vp →֒ VA ⊗ VB

where VA = Syma1 V1 ⊗ ... ⊗ Symap Vp, VB = Symb1 V1 ⊗ ... ⊗ Symbp Vp, with di = ai + bi for any

i = 1, ..., p. In particular, if n = 1 we may interpret a tensor F ∈ Symd1 V1 as a degree d1 homogeneous
polynomial on P(V ∗

1 ). In this case the matrix associated to the linear map F̃ : V ∗
A → VB is nothing

but the a1-th catalecticant matrix of F , that is the matrix whose lines are the coefficient of the partial
derivatives of order a1 of F . This identifies the linear space Hs

∂F in Remark 2.1 with P(F̃ (V ∗
A)) ⊆ P(VB),

where a1 = s, b1 = d − a1 = d − s.

Proposition 2.2. [MMS18, Propositions 3.1, 3.2] Let F ∈ k[x0, ..., xn]d be a polynomial admitting a

decomposition F =
∑h

i=1 λiL
d
i , s an integer such that

(n+s
n

) ≥ h >
(n+s−1

n

)
, and assume that

i) the linear space Hs
∂F generated by the partial derivatives of order s of F has dimension h − 1,

ii) dim(Hs
∂F ∩ Vn

d−s) = 0,

iii) deg(Hs
∂F ∩ Vn

d−s) = h.

Then F is h-identifiable and it has rank h. Furthermore, the criterion is effective when
(n+d−s

n

)
> h+n.

Algorithm 2.3. (Catalecticant Algorithm [IK99, Section 5.4])
Input: F ∈ K[x0, . . . , nn]d admitting a decomposition in h powers.
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- Construct the subspace Hs
∂F ⊂ PN(n,d−s) with s = ⌈d

2⌉.
- If either dim(Hs

∂F ) 6= h − 1 or dim(Hs
∂F ∩ Vn

d−s) 6= 0 or deg(Hs
∂F ∩ Vn

d−s) 6= h the algorithm
fails.

- Otherwise compute the intersection Hs
∂F ∩ Vn

d−s = {Ld−s
1 , . . . , Ld−s

h }.

- Solve the linear system F =
∑h

i=1 λiL
d
i in the unknowns λi ∈ K.

Proposition 2.2 can be extended to the mixed case as follows.

Proposition 2.4. [MMS18, Propositions 3.1, 3.2] Let T ∈ Symd1 V1 ⊗ ... ⊗ Symdp Vp be a tensor

admitting a decomposition T =
∑h

i=1 λiUi. Fix an (A, B)-flattening T̃ : V ∗
A → VB of T such that

N(n, a) ≥ h, and assume that

i) the linear space P(T̃ (V ∗
A)) has dimension h − 1,

ii) dim(P(T̃ (V ∗
A)) ∩ SVn

b ) = 0,

iii) deg(P(T̃ (V ∗
A)) ∩ SVn

b ) = h.

where b = (b1, ..., bn). Then T is h-identifiable and it has rank h. Furthermore, the criterion is effective

when N(n, b) > h + dim(SVn
b ).

Algorithm 2.5. (Catalecticant Algorithm for Segre-Veronese)

Input: T ∈ Symd1 V1 ⊗ ... ⊗ Symdp Vp admitting a decomposition in h rank one tensors Ui = vd1
1,i ⊗

· · · ⊗ v
dp

p,i for i = 1, . . . , h.

- Fix an (A, B)-flattening T̃ : V ∗
A → VB of T such that N(n, a) ≥ h, and consider the subspace

P(T̃ (V ∗
A)).

- If either dim(P(T̃ (V ∗
A)) 6= h − 1 or dim(P(T̃ (V ∗

A)) ∩ SVn
b ) 6= 0 or deg(P(T̃ (V ∗

A)) ∩ SVn
b ) 6= h for

all (A, B)-flattenings the algorithm fails.

- Otherwise compute the intersection P(T̃ (V ∗
A))∩SVn

b = {U b
1 , . . . , U b

h} where U
b
i = vb1

1,i⊗· · ·⊗v
bp

p,i.

- Solve the linear system F =
∑h

i=1 λiUi, with Ui = vd1
1,i ⊗ · · · ⊗ v

dp

p,i, in the unknowns λi ∈ K.

3. Generalized catalecticant method

In this section we introduce our main method in the symmetric case. As a warm-up we begin by
considering first partial derivatives.

Proposition 3.1. Let F ∈ K[x0, . . . , xn]d a polynomial admitting a decomposition of the form F =∑h
i=1 λiL

d
i . If

(i) H1
∂F ∩ Sech−n(Vn

d−1) has dimension zero and degree
(h

n

)
, and

(ii) H1
∂F ∩ Sech−n−1(Vn

d−1) contains less than
(h−1

n

)
points

then F has rank h and it is h-identifiable.

Proof. Write
F = (α1

0x0 + · · · + α1
nxn)d + · · · + (αh

0x0 + · · · + αh
nxn)d

Then
∂F

∂xj
= d(α1

j Ld−1
1 + · · · + αh

j Ld−1
h )

where Li = αi
0x0 + · · · + αi

nxn. For ξ = [ξ0 : · · · : ξn] ∈ Pn we have

ξ0
∂F

∂x0
+ · · · + ξn

∂F

∂xn
= d(L1(ξ)Ld−1

1 + · · · + Lh(ξ)Ld−1
h )

Any point D(F )(ξ) ∈ H1
∂F can be written in the above form. Therefore, if n of the linear forms Li

vanish at a point ξ ∈ Pn then D(F )(ξ) ∈ Sech−n(Vn
d−1). This determines

(h
n

)
points in the intersection

H1
∂F ∩ Sech−n(Vn

d−1) .
Now, if F is a linear combination of h − 1 powers of linear forms the same argument will determine(h−1
n

)
points in H1

∂F ∩ Sech−n−1(Vn
d−1), and this contradicts (ii).
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Furthermore, if F =
∑h

i=1 λiL
d
i =

∑h
j=1 µjl

d
j admits two different decompositions the argument

above shows that we would have more than
(h

n

)
points in H1

∂F ∩ (Sech−n(Vn
d−1)), and this would

contradict (i). �

Remark 3.2. Since, with the exceptions in Alexander-Hirshowitz’s theorem [AH95], we have that
dim(Sech−n(Vn

d−1)) = (h − n)n + h − n − 1, and whenever the partial derivatives of F are independent

dim(H1
∂F ) = n, for condition (i) in Proposition 3.1 to hold we must have

h < Bn,d :=

(d−1+n
n

)
+ n2

n + 1
.

The catalecticant method, which works at its best for even degree d = 2k, produces the bound
h ≤ (n+k

k

)
. Note that this binomial coefficients is in general much smaller than Bn,d.

Remark 3.3. Take d = 3. Since codimPN(n,2) Sech−n(Vn
2 ) = n2+3n−(h−n)(3n−h+3)+2

2 for condition

(i) in Proposition 3.1 to hold we need to have h < 4n−
√

8n+1+3
2 . The equality h = 4n−

√
8n+1+3
2

is also admissible for n = 1, 3 since in these cases we have codimPN(n,2) Sech−n(Vn
2 ) = n but also

deg(Sech−n(Vn
2 )) =

(h
n

)
. In general codimPN(n,2) Sech−n(Vn

2 ) = n holds if and only if n is a triangular

number, that is of the form
(k+1

2

)
. However, if the codimension of Sech−n(Vn

2 ) is n and n > 3 then

deg(Sech−n(Vn
2 )) >

(h
n

)
. So condition (i) in Proposition 3.1 can not hold.

When (n, h) ∈ {(1, 2), (3, 5)} we have that deg(Sech−n(Vn
2 )) =

(h
n

)
. The case (n, h) = (3, 5) is known

as Sylvester’s pentahedral theorem.

Lemma 3.4. Let Π1, . . . , Πh ⊂ Pn be h ≥ n + 1 general hyperplanes. Consider the points ξj1,...,jn =

Πj1 ∩ · · · ∩ Πjn. If Π′ ⊂ Pn is a hyperplane containing
(h−1

n−1

)
of the ξj1,...,jn then Π′ = Πi for some

i = 1, . . . , h.

Proof. If h = n + 1 then
(h−1

n−1

)
= n and the result is straightforward. If n = 2 and h = 4 the result is

immediate. Hence, we may assume that h <
(h−1

n−1

)
.

By hypothesis Π′ contains
(h−1

n−1

)
of the ξj1,...,jn−1, let us denote them by ξ1, . . . , ξ(h−1

n−1)
. In order to

cut out ξj we must choose n of the Πj and after choosing h of the points at least one of the Πj , say
Π1 has been chosen at least n times. Since Π1, . . . , Πh are general the n points ξi1, . . . , ξin ∈ Π′ ∩ Π1

determined by this procedure are in liner general position. So Π′ = Π1. �

Proposition 3.1 suggests the following algorithm for computing the linear forms Li starting from
the polynomial F .

Algorithm 3.5. Input: F ∈ K[x0, . . . , nn]d admitting a decomposition in h powers.

- Compute the intersection H1
∂F ∩ Sech−n(Vn

d−1). If the hypotheses of Proposition 3.1 are not
satisfied then the method fails.

- Otherwise the points
ξ1, . . . , ξ(h

n) ∈ H1
∂F ∩ Sech−n(Vn

d−1)

are the points where n of the h linear forms L1, . . . , Lh vanish. Note that on each hyperplane
Hi = {Li = 0} there are

(n−1
h−1

)
of the ξi.

- Among all the sets of
(n−1

h−1

)
of the ξi compute those spanning a hyperplane.

- By Lemma 3.4 these sets are exactly h and the h hyperplanes spanned by them are the zero
loci of the linear forms L1, . . . , Lh.

- Solve the linear system F =
∑h

i=1 λiL
d
i in the unknowns λi ∈ K.

Next, we generalize Proposition 3.1 using higher order partial derivatives.

Lemma 3.6. Consider a polynomial F =
∑h

i=1 Ld
i ∈ K[x0, . . . , xn]d. Then

Ds
ξ(F ) :=

∑

s0≤···≤sn

ξs0,...,sn

∂sF

∂xs0
0 . . . ∂xsn

n
=

d!

(d − s)!

h∑

i=1

〈Ls
i , ξ〉 Ld−s

j
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for all ξ = (ξs0,...,sn) ∈ PNs, where Ns =
(n+s

s

)− 1.

Proof. Write Li = α0,ix0 + · · · + αn,ixn. Then

∂sF

∂xs0
0 . . . ∂xsn

n
=

d!

(d − s)!
((αs0

0,1 . . . αsn

n,1)Ld−s
1 + · · · + (αs0

0,h . . . αsn

n,h)Ld−s
h )

Hence
∑

s0≤···≤sn
ξs0,...,sn

∂sF

∂x
s0
0 ...∂x

sn
n

= d!
(d−s)!

(∑
s0≤···≤sn

ξs0,...,sn

∑h
i=1(αs0

0,i . . . αsn

n,i)L
d−s
i

)

d!
(d−s)!

∑h
i=1

∑
s0≤···≤sn

(αs0
0,i . . . αsn

n,i)ξs0,...,snLd−s
i

that is Ds
ξ(F ) = d!

(d−s)!

∑h
i=1 〈Ls

i , ξ〉 Ld−s
i . �

Theorem 3.7. Let F ∈ K[x0, . . . , xn]d be a homogeneous polynomial admitting a decomposition of

the form F =
∑h

i=1 Ld
i . If

(i) Hs
∂F ∩ Sech−Ns

(Vn
d−s) has dimension zero and degree

( h
Ns

)
, and

(ii) Hs
∂F ∩ Sech−Ns−1(Vn

d−s) contains less than
(h−1

Ns

)
points;

then F has rank h and it is h-identifiable. Furthermore, if h ≤ Ns + 2 the identifiability criterion is

effective.

Proof. Write
F = (α1

0x0 + · · · + α1
nxn)d + · · · + (αh

0x0 + · · · + αh
nxn)d.

By Lemma 3.6, if Ns of the linear forms Li vanish at a point ξ ∈ PNs then Ds
ξ(F ) ∈ Sech−Ns

(Vn
d−s).

This determines
( h

Ns

)
points in the intersection Hs

∂F ∩ Sech−Ns
(Vn

d−s).
Now, if F is a linear combination of h − 1 powers of linear forms the same argument will determine(h−1

Ns

)
points in Hs

∂F ∩ Sech−Ns−1(Vn
d−s), and this contradicts (ii).

Furthermore, if F =
∑h

i=1 λiL
d
i =

∑h
j=1 µjl

d
j admits two different decompositions the argument

above shows that we would have more than
( h

Ns

)
points in Hs

∂F ∩ Sech−Ns
(Vn

d−s), and this would

contradict (i).
Finally, we prove the effectiveness of the criterion for h ≤ Ns + 2. It is enough to consider the

case h = Ns + 2. Take F ∈ Sech(Vn
d ) general, let HL be the (h − 1)-plane spanned by the powers

Ld−s
i , and assume that Hs

∂F intersects Sech−Ns
(Vn

d−s) in an additional point G. Then we may write

G =
∑h−Ns

j=1 αjl
d−s
j . Set Hl =

〈
Hs

∂F , ld−s
1 , . . . , ld−s

h−Ns

〉
. Note that dim(Hl) ≤ Ns + (h − Ns − 1) = h − 1.

We may write the Ns + 1 partial derivatives of order s of F as linear combinations of the Ld−s
i .

Moreover, for the polynomial G we have G =
∑h

i=1 λiL
d−s
i =

∑h−Ns

j=1 αj ld−s
j . Hence, we have Ns + 1

linear equations in the Ld−s
1 , . . . , Ld−s

h , and since h = Ns + 2 we may write Ld−s
1 , . . . , Ld−s

h as linear

combinations of the partial derivatives of order s of F and of ld−s
1 , . . . , ld−s

h−Ns
. Then HL = Hl intersects

Vn
d−s at least in {Ld−s

1 , . . . , Ld−s
h , ld−s

1 , . . . , ld−s
h−Ns

}. On the other hand, HL is generated by the h general

points Ld−s
1 , . . . , Ld−s

h ∈ Vn
d−s and this contradicts the Trisecant lemma [CC02, Proposition 2.6]. �

Remark 3.8. As observed in Remark 3.3, Theorem 3.7 gives a criterion for identifiability of cubics

for h < 4n−
√

8n+1+3
2 . Furthermore, by the last part of Theorem 3.1 we have that such criterion is

effective for h ≤ n + 2.

4. Uniqueness and finiteness of the decompositions

Let h(n, d) be the minimum integer such that a general F ∈ k[x0, ..., xn]d admits a decomposition
in sum of powers. The number h(n, d) has been determined in [AH95] and h(n, d)-identifiability very
seldom holds. Indeed, by [GM19, Theorem 1] a general polynomial F ∈ k[x0, ..., xn]d is h(n, d)-
identifiable only in the following cases:

- n = 1, d = 2m + 1, h(n, d) = m [Syl04];
- n = d = 3, h(3, 3) = 5 [Syl04];
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- n = 2, d = 5, h(2, 5) = 7 [Hil88].

The case n = 1 is covered by the catalecticant method, while the second case can be achieved using
Proposition 3.1. The next result deals with the third case.

Proposition 4.1. Let F ∈ K[x0, . . . , xn]d admitting a decomposition of the form admitting a decompo-

sition of the form F =
∑h

i=1 λiL
d
i . Assume that for some s the linear space Hs

∂F ⊂ P(K[x0, x1, x2]d−s)

has dimension
(n+s

s

) − 1 = h − 2 and does not intersect Vn
d−s. Set V

n
d−s := πHs

∂F
(Vd

n), where

πHs
∂F

: PN(n,d−s)
99K PM is the projection from Hs

∂F . If V
n
d−s has a unique point of multiplicity

h then F is h-identifiable.

Proof. Since Hs
∂F ∩ Vn

d−s = ∅ the projection πHs
∂F

restricts to a morphism on Vn
d−s. Write F =

∑h
i=1 λiL

d
i , and set HL =

〈
Ld−s

1 , . . . , Ld−s
h

〉
. Then Hs

∂F is a hyperplane in HL, and πHs
∂F

(HL) ∈ V
n
d−s

is a singular point of multiplicity h for V
n
d−s. Assume that F =

∑h
i=1 λiL

d
i =

∑h
i=1 µil

d
i admits two

different decompositions and consider the associated (h−1)-planes HL, Hl in P(K[x0, x1, x2]d−s). Then
πHs

∂F
(HL), πHs

∂F
(Hl) ∈ V

n
d−s are two points of multiplicity h for V

n
d−s, a contradiction. �

Note that Proposition 4.1 provides the following algorithm to compute the decomposition.

Algorithm 4.2. Input: F ∈ K[x0, . . . , nn]d admitting a decomposition in h powers.

- If either dim(Hs
∂F ) 6= h−2 or Hs

∂F ∩Vn
d−s 6= ∅ for all s the algorithm fails. Otherwise, consider

the linear space Hs
∂F such that dim(Hs

∂F ) = h − 2 and Hs
∂F ∩ Vn

d−s = ∅.

- Compute the image of the projection V
n
d−s := πHs

∂F
(Vn

d−s).

- Compute the reduced subscheme Sh ⊂ V
n
d−s consisting of the points of multiplicity h of V

n
d−s.

- If Sh consists of more than one point the algorithm fails. If Sh = {p} consists of a single point

compute the linear span Hp = 〈Hs
∂F , p〉 ⊂ PN(n,d−s).

- Compute the intersection Hp ∩ Vn
d−s = {Ld−s

1 , . . . , Ld−s
h }.

- Solve the linear system F =
∑h

i=1 λiL
d
i in the unknowns λi ∈ K.

Remark 4.3. In particular, when n = 2, d = 5, h = 7, s = 2 Proposition 4.1 provides an algorithm to
compute the decomposition of a plane quintic in seven powers.

Decompositions over the rationals. Let F ∈ Q[x0, . . . , xn]d be a homogeneous polynomial admit-
ting a decomposition, as sum of powers, defined over Q. In this case the methods in Section 3 can
by extended using star configurations to the cases where the intersection Hs

∂F ∩ Sech−Ns
(Vn

d−s) has
positive dimension.

Definition 4.4. Let H = {H1, . . . , Hm} be a collection of m distinct hyperplanes in Pr. Assume
that the intersection of any t of these hyperplanes is either empty or has codimension t. For any
1 ≤ c ≤ min(m, n) the codimension c star configuration associated to H is the union

Sc(H,Pr) :=
⋃

1≤i1<···<ic≤s

Hi1 ∩ · · · ∩ Hic

of the codimension c linear subspaces defined by all the intersections of c of the hyperplanes in H.

We refer to [CT11], [GHM13], [CGT14], [CGT15] for details on star configurations.

Proposition 4.5. Let F ∈ K[x0, . . . , xn]d be a homogeneous polynomial admitting a decomposition of

the form F =
∑h

i=1 λiL
d
i . Fix homogeneous coordinates ξ = (ξs0,...,sn) on Hs

∂F , and set Hi = {〈Ls
i , ξ〉 =

0} ⊂ Hs
∂F for i = 1, . . . , h. For any c ≤ dim(Hs

∂F ) the collection of hyperplanes H = {H1, . . . , H(h

c)
}

defines a codimension c star configuration Sc(H, Hs
∂F ) contained in Hs

∂F ∩ Sech−c(Vn
d−s).

Proof. Since the linear forms Li are linearly independent the polynomials Ls
i are linearly independent

in K[x0, . . . , xn]s. So Sc(H, Hs
∂F ) is a star configuration of codimension c in Hs

∂F .
Furthermore, by Lemma 3.6 the codimension c linear subspace in Sc(H, Hs

∂F ) are contained in
Sech−c(Vn

d−s), and hence Sc(H, Hs
∂F ) ⊂ Hs

∂F ∩ Sech−c(Vn
d−s). �
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Proposition 4.5 is particularly interesting when F ∈ Q[x0, . . . , xn]d has a decomposition defined over
Q, and c = dim(Hs

∂F ). In this case Sc(H, Hs
∂F ) is a star configuration of points in Hs

∂F ∩Sech−c(Vn
d−s),

and since the linear forms Li are defined over Q we have that the points of Sc(H, Hs
∂F ) are defined

over Q as well.

Algorithm 4.6. Input: F ∈ Q[x0, . . . , nn]d admitting a decomposition in h powers defined over Q.

- Compute the intersection Hs
∂F ∩ Sech−Ns

(Vn
d−s).

- Compute the rational points of Hs
∂F ∩ Sech−Ns

(Vn
d−s).

- If Hs
∂F ∩ Sech−Ns

(Vn
d−s) has infinitely many rational points the algorithm fails.

- If the set of rational points {Q1, . . . , Qk} of Hs
∂F ∩ Sech−Ns

(Vn
d−s) is finite solve the linear

system F =
∑h

i=1 λiQ
d
i for all subsets of cardinality h of {Q1, . . . , Qk}.

Algorithm 4.6 works particularly well for plane quintics.

Proposition 4.7. Let F ∈ K[x0, x1, x2]5 be a homogeneous polynomial. Assume that H1
∂F intersects

Sec5(V2
4 ) along a smooth curve. Then H1

∂F ∩ Sec5(V2
4 ) has finitely many rational points.

Proof. The secant variety Sec5(V2
4 ) is the hypersurface of degree six in P14 cut out by the catalecticant

matrix of the second partial derivatives of a polynomial of degree four in three variables [LO13, Section
1], and H1

∂F
∼= P2. Hence C = H1

∂F ∩Sec5(V2
4 ) is a smooth plane sextic and by Faltings theorem [Fal83]

C has finitely many rational points. �

Proposition 4.8. Let F ∈ K[x0, . . . , xn]d be e homogeneous polynomial admitting a decomposition of

the form F =
∑h

i=1 λiL
d
i . Assume that for some integer s ≥ 0 we have that Hs

∂F has dimension h − 3.

Set HL = πHs
∂F

(HL) ⊂ PM , where HL =
〈

Ld−s
1 , . . . , Ld−s

h

〉
. Then HL ⊂ PM is contained in all the

hypersurfaces of degree c < h in the ideal of V
n
d−s = πHs

∂F
(Vn

d−s).

Proof. Note that HL ⊂ PM is a line intersecting V
n
d−s in at least h points. Hence, if Zc is a hypersurface

of degree c < h containing V
n
d−s Bézout’s theorem yields that HL ⊂ Zc. �

Algorithm 4.9. Input: F ∈ K[x0, . . . , xn]d admitting a decompositions in h powers. Assume that
the hypothesis of Proposition 4.8 are satisfied.

- Compute V
n
d−s and the scheme Z cut out by the hypersurfaces of degree at most h−1 containing

V
n
d−s.

- If Z does not have components of dimension one the algorithm fails. Otherwise do the following
for all components R of dimension one of Z:
(i) let R be the inverse image of R via πHs

∂F
: PN(n,d−s)

99K PM ;

(i) if R intersects Vn
d−s in h points {ld−s

1 , . . . , ld−s
h } solve the linear system F =

∑h
i=1 λil

d
i ,

otherwise go the the next component.
- For any R such that R ∩ Vn

d−s consists of h points and F =
∑h

i=1 λil
d
i is compatible we get a

decomposition of F in h powers.

Remark 4.10. The generic rank of a general polynomial of degree seven in three variables is h = 12,
and there are exactly five decompositions [Dix07]. We successfully applied Algorithm 4.9 to this case.

5. Subgeneric cases

As opposed to the generic case when h < h(n, d) is smaller than the generic rank we have that a
general polynomial F ∈ K[x0, . . . , xn]d of rank h is identifiable with the following three exceptions:

- n = 2, d = 6, h = 9;
- n = 3, d = 4, h = 8;
- n = 5, d = 3, h = 9;

and in these three cases there are exactly two decompositions [COV17b, Theorem 1.1].
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Proposition 5.1. Let F ∈ K[x0, . . . , xn]d be a homogeneous polynomial admitting a decomposition

of the form F =
∑h

i=1 λiL
d
i . Assume that Hs

∂F ∩ Vn
d−s = ∅ and consider πHs

∂F
: PN(n,d−s)

99K PM the

projection with center Hs
∂F . Set HL =

〈
Ld−s

1 , . . . , Ld−s
h

〉
. Assume that the Ld−s

i lie on a subvariety

W ⊆ Vn
d−s. Set HL = πHs

∂F
(HL) and W = πHs

∂F
(W ).

Assume that there are integers a, b such that through h − a + 1 general points of HL there exists a

curve of degree b contained in HL. Then HL is contained in all the hypersurfaces of degree c < h−a+1
b

in the ideal of W .

Proof. The projection HL of HL is a linear subspace of dimension h − (n+s
s

)− 1 intersecting V
n
d−s in

h points {x1, . . . , xh}.
Let Cb ⊂ HL be a curve of degree b through x1, . . . , xh−a, y, where y ∈ HL is general, and Zc ⊂ PM

a hypersurface of degree c containing V
n
d−s. Note that Zc intersects Cb in at least h − a + 1 points.

Since bc < h − a + 1 Bézout’s theorem yields that Cb ⊂ Zc. Finally, since y ∈ HL is general we
conclude that HL ⊂ Zc as well. �

Algorithm 5.2. Input: F ∈ K[x0, . . . , nn]d admitting a decompositions in h powers. Assume that
the hypotheses of Proposition 5.1 are satisfied.

- Compute the projection W ⊂ PM of W .
- Compute the subscheme Z ⊂ PM cut out by the hypersurface of degree c < h−a+1

b
in the ideal

of W .
- If Z has no linear irreducible component of dimension h − (n+s

s

)− 1 the algorithm fails.

- Otherwise, do the following for all the linear irreducible components R of dimension h−(n+s
s

)−1
of Z:
(i) let R be the inverse image of R via πHs

∂F
: PN(n,d−s)

99K PM ;

(i) if R intersects Vn
d−s in h points {ld−s

1 , . . . , ld−s
h } solve the linear system F =

∑h
i=1 λil

d
i ,

otherwise go the the next component.
- For any R such that R ∩ Vn

d−s consists of h points and F =
∑h

i=1 λil
d
i is compatible we get a

decomposition of F in h powers.

Remark 5.3. In the exceptional cases

(d, n, h) ∈ {(6, 2, 9), (4, 3, 8), (3, 5, 9)}
there are exactly two decomposition for the general polynomial. In each of these cases the two
decompositions are contained in an elliptic normal curve Cd,n,h [COV17b, Theorem 1.2]. Proposition
5.1 can be applied with the following values:

- for (d, n, h) = (6, 2, 9) we consider C6,2,9 = H3
∂F ∩V3

3 ⊂ P9. Take W = ν2
4 ((ν2

3)−1(C6,2,9)) ⊂ P14

and W = πH2
∂F

(W ) ⊂ P8.

Then HL is a 2-plane intersecting W in h = 9 points. Taking, in Proposition 5.1, a = 1,
b = 3, that is the plane cubics through eight of the nine points and a general point of HL, we
get that HL is contained in all the hypersurfaces of degree c ∈ {1, 2} of P8 containing W .

- for (d, n, h) = (3, 5, 9) take s = 1 and as before W ⊂ V5
2 ⊂ P20 the elliptic curve containing the

decomposition of F and W = πH1
∂F

(W ) ⊂ P14. Again taking a = 1, b = 3 in Proposition 5.1

we get that HL is contained in all the hypersurfaces of degree c ∈ {1, 2} of P14 containing W .

For the case (d, n, h) = (4, 3, 8) a little variation is needed.

Proposition 5.4. Let F ∈ K[x0, x1, x2, x3]4 be a homogeneous polynomial admitting a decomposition

of the form F =
∑8

i=1 λiL
4
i . Set HL =

〈
L3

1, . . . , L3
8

〉
, HL = πH1

∂F
(HL) ∼= P3, and let W ⊂ P19 be

the elliptic curve containing the decomposition of F . Then the elliptic normal curve C ⊂ HL through

πH1
∂F

({L3
1, . . . , L3

8}) is contained in all the hypersurfaces of degree c ∈ {1, 2} in the ideal of W .

Proof. Let Zc be a hypersurface of degree c containing W . Then Zc intersects C in at least eight
points. So if c ≤ 1 Bézout’s theorem yields that C ⊂ Zc. Write C = Q1 ∩ Q2 as the intersection of
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two quadrics. A quadric Q passing through πH1
∂F

({L3
1, . . . , L3

8}) is in the pencil generated by Q1, Q2,

and hence it must contain C. �

Remark 5.5. Thanks to Algorithm 5.2 we managed to compute the two decompositions of a general
rank nine plane sextic. In this case a geometric way to find the second decomposition, once one of
them is known, has been described in terms of liaison in [CO21, Section 3].

6. Infinitely many decompositions

In this section, plugging-in the concept of variety of sum of powers, we give algorithm to compute
a decomposition of a polynomial admitting infinitely many.

Definition 6.1. Let F ∈ k[x0, ..., xn]d be a general homogeneous polynomial of degree d. Let h be a
positive integer and Hilbh(Pn∗) the Hilbert scheme of sets of h points in Pn∗. We define

VSP(F, h)o := {{L1, ..., Lh} ∈ Hilbh(Pn∗) | F ∈ 〈Ld
1, ..., Ld

h〉 ⊆ PN(n,d)} ⊆ Hilbh(Pn∗)},

and VSP(F, h) := VSP(F, h)o by taking the closure of VSP(F, h)o in Hilbh(Pn∗).

Assume that the general polynomial F ∈ PN(n,d) is contained in a (h − 1)-linear space h-secant to
Vn

d . Then, by [Dol04, Proposition 3.2] the variety VSP(F, h) has dimension

dim(VSP(F, h)) = h(n + 1) − N(n, d) − 1.

Furthermore, if n = 1, 2 then for F varying in an open Zariski subset of PN(n,d) the variety VSP(F, h)
is smooth and irreducible.

In order to apply these objects to the study of decompositions, we need to construct similar varieties
parametrizing decomposition of homogeneous polynomials as sums of powers of ordered linear forms.
Let us consider the incidence variety

J := {((l1, . . . , ls), {L1, ..., Lh}) | li ∈ {L1, ..., Lh} ∈ VSP(F, h)o for i = 1, . . . , s} ⊆ (Pn∗)s ×VSP(F, h)o

and define VSPs(F, h) as the closure J of J in (Pn∗)s × VSP(F, h).
Let V be a complex vector space of dimension n + 1, choose coordinates x0, . . . , xn on V and the

dual coordinates ξ0, . . . , ξn on V ∗. Let F ∈ K[x0, . . . , xn]d be a homogeneous polynomial of even
degree d = 2m, and consider the basis of K[x0, . . . , xn]m given by

(6.2) B =

{(
m

m0, . . . , mn

)
n∏

t=0

xmt
t , m0 + · · · + mn = m

}

where
( m

m0,...,mn

)
= m!

m0!...mn! . The m-th catalecticant matrix Catm(F ) of F is the (m + 1) × (m + 1)

symmetric matrix whose rows are the order m partial derivatives of F written in the basis B (6.2) in
lexicographic order. The matrix Catm(F ) induces a symmetric bilinear form

ΩF : K[ξ0, . . . , ξn]m × K[ξ0, . . . , ξn]m → K.

For our purposes the following result will be fundamental.

Lemma 6.3. [Dol04, Proposition 3.8] Let F ∈ K[x0, . . . , xn]d be a homogeneous polynomial of even

degree d = 2m and assume that F can be decomposed as

F = L2m
1 + · · · + L2m

h

and the powers Lm
i are linearly independent in K[x0, . . . , xn]m. Then ΩF (Lm

i , Lm
j ) = 0 for any i, j =

1, . . . h with i 6= j.

Define Xs as the subvariety of (Pn∗)s cut out by the relations ΩF (pi, pj) = 0 for any i, j = 1, . . . s

with i 6= j, where we denote by pi a point in the i-th factor of (Pn∗)s.
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Proposition 6.4. Assume that

dim(VSP(F, h)) − dim(VSP(F, h − s)) ≥ ns −
(

s

2

)
.

Then for a general (Lm
1 , . . . , Lm

s ) ∈ Xs there exists a decomposition of F in h linear forms of the form

{L1, . . . , Ls, ls+1, . . . , lh}.

Proof. By Lemma 6.3 the image of the projection onto the first factor

π : VSPs(F, h) → (Pn∗)s

is contained in Xs. Fix (Lm
1 , . . . , Lm

s ) ∈ Xs general. The fiber of π over (Lm
1 , . . . , Lm

s ) is a finite
covering of VSP(F, h − s). Hence, under our hypotheses π : VSPs(F, h) → Xs is dominant. �

Remark 6.5. Proposition 6.4 says that, under certain hypothesis on the dimensions of the relevant
varieties of sums of powers, in order to construct a decomposition of F in h powers we can simply
choose s linear forms L1, . . . , Ls ∈ Pn∗ such that (Lm

1 , . . . , Lm
s ) ∈ Xs and then compute a decomposition

of F − Ld
1 − · · · − Ld

s in h − s powers. For instance, Proposition 6.4 can be successfully applied in the
following cases:

- (d, n, h) = (4, 2, 6), with s = 2. In this case X2 ⊂ (P2∗)2 is a 3-fold and dim(VSP(F, 6)) = 3.
Since a general polynomial G ∈ Sec4(V2

4 ) admits a unique decomposition the map

π : VSP2(F, 6) → X2

is dominant and finite. Hence we may choose a general point (L2
1, L2

2) ∈ X2 and then recon-
struct a decomposition in four powers of G := F − L4

1 − L4
2 using Algorithm 2.3.

- (d, n, h) = (6, 2, 10), with s = 1. Since a general polynomial G ∈ Sec9(V2
6 ) admits two

decompositions in nine powers and VSP(F, 10) is a surface the map

π : VSP1(F, 10) → X1
∼= P2∗

is dominant and finite. So we may choose a general linear form L1 ∈ P2∗ and compute a
decomposition in nine powers of G := F − L6

1 with Algorithm 5.2.
- (d, n, h) = (4, 3, 10), with s = 2. Since a general polynomial G ∈ Sec8(V3

4 ) admits two
decompositions in nine powers and VSP(F, 10) has dimension five the map

π : VSP2(F, 10) → X2

is dominant and finite. Again, we may choose a general point (L2
1, L2

2) ∈ X2 and then recon-
struct a decomposition in eight powers of G := F − L4

1 − L2
2.

6.5. Lifting decompositions from derivatives. In this section we give conditions ensuring that a
simultaneous decomposition of the derivatives of a polynomial lifts to a decomposition of the polyno-
mial itself.

Lemma 6.6. Let F ∈ K[x0, ..., xn]d be a homogeneous polynomial. Assume that its partial derivatives

admit a decomposition

Fx0 =
h∑

i=1

α0
i Ld−1

i , ..., Fxn =
h∑

i=1

αn
i Ld−1

i

in h linear forms Li = A0
i x0 + ... + An

i xn such that Ld−2
1 , ..., Ld−2

h are independent in K[x0, ..., xn]d−2.

Then there are the following relations between the coefficients

αt
iA

s
i = αs

i At
i, t, s = 0, ..., n; i = 1, ..., h.

These relations force the decomposition of the partial derivatives to be of the following form

Fx0 =
h∑

i=1

α0
i λd−1

i (α0
i x0 + ... + αn

i xn)d−1, ..., Fxn =
h∑

i=1

αn
i λd−1

i (α0
i x0 + ... + αn

i xn)d−1,
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where λi =
A0

i

α0
i

= ... =
An

i

αn
i

. Furthermore the decomposition lifts to a decomposition of the polynomial

F =
h∑

i=1

1

λi

Ld
i .

Proof. We have Fxtxs = Fxsxt for any t, s = 0, .., n. Since Ld−2
1 , ..., Ld−2

h are independent these equali-
ties forces αt

iA
s
i = αs

i At
i, t, s = 0, ..., n; i = 1, ..., h.

Then A1
i = α1

i
A0

i

α0
i

, ..., An
i = αn

i
An

i

αn
i

. Define λi =
A0

i

α0
i

= ... =
An

i

αn
i

for any i = 1, ..., h. Substituting in

Ld−2
i = (A0

i x0 + ... + An
i xn)d−2 we get

Li = λd−2
i (α0

i x0 + ... + αn
i xn)d−2, i = 1, ..., h.

Then the expressions for the partial derivatives become

Fx0 =
h∑

i=1

α0
i λd−1

i (α0
i x0 + ... + αn

i xn)d−1, ..., Fxn =
h∑

i=1

αn
i λd−1

i (α0
i x0 + ... + αn

i xn)d−1.

To lift the decomposition to F consider the Euler formula F =
∑n

i=1 xiFxi
. Substituting the above

expressions for the partial derivatives and by straightforward computations we get F =
∑h

i=1
1
λi

Ld
i . �

Proposition 6.7. Let F ∈ K[x0, ..., xn]d be a homogeneous polynomial. Suppose that its partial

derivatives of order s admit a simultaneous decomposition in h powers of linear forms L1, . . . , Lh

such that Ld−s−1
1 , ..., Ld−s−1

h are independent in K[x0, ..., xn]d−s−1. Then the decomposition lifts to a

decomposition of the polynomial F .

Proof. It is enough to apply Lemma 6.6 recursively. �

Algorithm 6.8. Input: A polynomial F ∈ K[x0, . . . , xn]d.

- Compute the spaces Hs
∂F . If for all s ≥ 1 we have that

- either there does not exist a subset of point of Hs
∂F ∩ Vn

d−s generating Hs
∂F or;

- such a subset {Ld−s
1 , . . . , Ld−s

h } ⊂ Hs
∂F ∩ Vn

d−s exists but the powers Ld−s−1
1 , . . . , Ld−s−1

h ∈
K[x0, ..., xn]d−s−1 are linearly dependent;

the algorithm fails.
- Otherwise, take an integer s such that there exists {Ld−s

1 , . . . , Ld−s
h } ⊂ Hs

∂F ∩ Vn
d−s with

Ld−s−1
1 , . . . , Ld−s−1

h ∈ K[x0, ..., xn]d−s−1 linearly independent.

- Solve the linear system F =
∑h

i=1 λiL
d
i in the unknowns λi.

Remark 6.9. The advantage of Algorithm 6.8 is that it does no require to know in advance that F

admits a decomposition in h powers.

7. Mixed tensors

In this section we extend the methods developed in Section 3 to the non symmetric case.

Lemma 7.1. Let T ∈ Symd1 V1 ⊗ · · · ⊗ Symdp Vp be a mixed tensor admitting a decomposition of the

following form

T = Ld1
1,1 ⊗ · · · ⊗ L

dp

1,p + · · · + Ld1
h,1 ⊗ · · · ⊗ L

dp

h,p

where Lj,i ∈ Vi for i = 1, . . . , p, j = 1, . . . , h. Consider a flattening T̃ : V ∗
A → VB, where VA =

Syma1 V1 ⊗ · · · ⊗ Symap Vp and VB = Symb1 V1 ⊗ · · · ⊗ Symbp Vb. Let {ei
0, . . . , ei

ni
} be a basis of Vi, and

ξ = (ξ0, . . . , ξMA
) ∈ PMA with MA =

∏p
i=1

(ai+ni

ni

)− 1. Then the linear combination

ξ0T̃ ((e1
0)a1 . . . (ep

0)ap) + · · · + ξMA
T̃ ((e1

n1
)a1 . . . (ep

np
)ap)

is a scalar multiple of

(La1
1,1 ⊗ · · · ⊗ L

ap

1,p)(ξ)(Lb1
1,1 ⊗ · · · ⊗ L

bp

1,p) + · · · + (La1
h,1 ⊗ · · · ⊗ L

ap

h,p)(ξ)(Lb1
h,1 ⊗ · · · ⊗ L

bp

h,p)
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Proof. Since the matrix representing the flattening T̃ , in the given bases, is made of blocks which are
catalecticant matrices with respect to the symmetric parts of T the claim follows from Lemma 3.6. �

Theorem 7.2. Let T ∈ Symd1 V1 ⊗ · · · ⊗ Symdp Vp be a mixed tensor admitting a decomposition of

the form

T = Ld1
1,1 ⊗ · · · ⊗ L

dp

1,p + · · · + Ld1
h,1 ⊗ · · · ⊗ L

dp

h,p

where Lj,i ∈ Vi for i = 1, . . . , p, j = 1, . . . , h. If there exists a flattening T̃ : V ∗
A → VB, where

VA = Syma1 V1 ⊗ · · · ⊗ Symap Vp and VB = Symb1 V1 ⊗ · · · ⊗ Symbp Vb, such that

(i) P(T̃ (V ∗
A)) ∩ Sech−A(SVn

b ) consists of
(h

A

)
distinct points, and;

(ii) P(T̃ (V ∗
A)) ∩ Sech−A−1(SVn

b ) consists of less than
(h−1

A

)
distinct points,

where A =
∏p

i=1

(ai+ni

ni

)− 1 then T has rank h and it is h-identifiable. Furthermore, for h ≤ A + 2 the

identifiability criterion is effective.

Proof. By Lemma 7.1, if A of the forms La1
i,1 ⊗ · · · ⊗ L

ap

i,p vanish at a point ξ ∈ PA then

ξ0T̃ ((e1
0)a1 . . . (ep

0)ap) + · · · + ξMA
T̃ ((e1

n1
)a1 . . . (ep

np
)ap) ∈ Sec

h−A
(SVn

b )

This determines
(h

A

)
points in the intersection P(T̃ (V ∗

A)) ∩ Sec
h−A

(SVn
b ).

Now, if T is a linear combination of h − 1 elementary tensors the same argument will determine(h−1
A

)
points in P(T̃ (V ∗

A)) ∩ Sec
h−A−1(SVn

b ), and this contradicts (ii).

Furthermore, if T admits two different decompositions the argument above shows that we would
have more than

(h
A

)
points in P(T̃ (V ∗

A)) ∩ Sech−A(SVn
b ), and this would contradict (i).

Finally, for the claim on the effectiveness for h ≤ A + 2 it is enough to argue as in last part of the
proof of Theorem 3.7. �

Algorithm 7.3. Input: T ∈ Symd1 V1 ⊗ · · · ⊗ Symdp Vp admitting a decomposition in h elementary
tensors.

- If the hypotheses of Theorem 7.2 are not satisfied for all (A, B)-flattenings then the method
fails.

- Otherwise the points

ξ1, . . . , ξ(h

A) ∈ P(T̃ (V ∗
A)) ∩ Sec

h−A
(SVn

b )

are the points where A of the h forms La1
i,1 ⊗ · · · ⊗ L

ap

i,p vanish. Note that on each hyperplane

Hi = {La1
i,1 ⊗ · · · ⊗ L

ap

i,p = 0} there are
(h−1

A−1

)
of the ξi.

- Among all the sets of
(h−1

A−1

)
of the ξi compute those spanning a hyperplane.

- By Lemma 3.4 these sets are exactly h and the h hyperplanes spanned by them are the zero
loci of the forms La1

i,1 ⊗ · · · ⊗ L
ap

i,p.

- Solve the linear system T =
∑h

i=1 λi(L
a1
i,1 ⊗ · · · ⊗ L

ap

i,pw) in the unknowns λi ∈ K.

Remark 7.4. Since the expected dimension of Sec
h−A

(SVn
b ) is

∑p
i=1 nbi

(h−A)+h−A−1 in order to

apply Theorem 7.2 in the Segre-Veronese case we must have
∑p

i=1 ni(h−A)+h−A−1+
∏p

i=1

(ai+ni

ni

)
<

∏p
i=1

(bi+ni

ni

)
that is

h <

∏p
i=1

(bi+ni

ni

)
+ (
∏p

i=1

(ai+ni

ni

)− 1)
∑p

i=1 ni
∑p

i=1 ni + 1
.

Similarly, in the Segre case since the expected dimension of Sec
h−A

(Sn
b ) is

∑p−s
i=1 nbi

(h−A)+h−A −1
we get

h <

∏p
i=p−s+1(ni + 1) + (

∏p−s
i=1 (ni + 1) − 1)

∑p
i=p−s+1 ni∑p

i=p−s+1 ni + 1
.
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Theorem 7.2 is particularly useful for Segre products of three factors. In this case the actual codi-
mension of Sech−A(Sn

b ) is (n2 − h + A + 1)(n3 − h + A + 1). Hence, in order the apply Theorem 7.2

we need to have

(7.5) h <
2n1 + n2 + n3 + 2 −

√
n2

2 − 2n2n3 + n2
3 + 4n1

2
.

As in Remark 3.3 when the right hand side of (7.5) is equal to the degree of Sech−n1(Sn
b ) the equality

in (7.5) is allowed. In this case the classical flattenings method in Proposition 2.4 works under the
bound h ≤ n1 + 1. For instance, when n1 = n2 = n3 = n the bound in (7.5) becomes h < 2n − √

n + 1
while classical flattenings work for h ≤ n + 1.

8. Magma scripts

A Magma library which implements our algorithms can be downloaded at the following link:

https://github.com/alaface/tensors-algorithm

In the following we explain the main functions in the library. The function PolynomialOfRank gen-
erates a random polynomial of a given rank and the functions Hilbert, Sextic and Septic compute
a decomposition of a plane curve of degree five, six and seven respectively in seven, nine and twelve
powers. Here as some examples on a finite field and on the field of rational numbers.

> load "library.m";

> F,lis,coef := PolynomialOfRank(2,5,7,Rationals());

> time S,Scoef := Hilbert(F);

Time: 3.490

> S;

[

-2*x[1] - 9/4*x[2] + x[3],

-3/50*x[1] + x[2] + x[3],

-2/7*x[1] + x[2] + x[3],

1/2*x[1] - 9/40*x[2] + x[3],

27/14*x[1] + 12/7*x[2] + x[3],

40/27*x[1] - 1/9*x[2] + x[3],

20/9*x[1] + 5/2*x[2] + x[3]

]

> G := &+[S[j]ˆ5*Scoef[j]:j in [1..#Scoef]];

> F eq G;

true

> time S,Scoef := Sextic(PolynomialOfRank(2,6,9,Rationals()));

Time: 19.300

> time S,Scoef := Septic(PolynomialOfRank(2,7,12,GF(32003)));

Time: 1.750

> P2<[x]> := ProjectiveSpace(RationalField(),2);

> P := x[1]ˆ7+x[2]ˆ7+x[3]ˆ7+(x[1]+x[2]+x[3])ˆ7+(x[1]+2*x[2]+3*x[3])ˆ7 +(x[1]+7*x[2]+5*x[3])ˆ7

+(x[1]+(1/2)*x[2]+(1/3)*x[3])ˆ7+(x[1]+(1/5)*x[2]+(2/3)*x[3])ˆ7+(x[1]+(1/7)*x[2]+(1/4)*x[3])ˆ7

+(x[1]+8*x[2]+x[3])ˆ7+(x[1]+(1/11)*x[2]+5*x[3])ˆ7+(x[1]+(3/2)*x[2]+(5/7)*x[3])ˆ7;

> time Septic(P);

[

x[3],

x[2],

x[1],

x[1] + x[2] + x[3],

1/3*x[1] + 2/3*x[2] + x[3],

1/5*x[1] + 7/5*x[2] + x[3],

x[1] + 8*x[2] + x[3],

3*x[1] + 3/2*x[2] + x[3],

1/5*x[1] + 1/55*x[2] + x[3],

7/5*x[1] + 21/10*x[2] + x[3],

https://github.com/alaface/tensors-algorithm
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3/2*x[1] + 3/10*x[2] + x[3],

4*x[1] + 4/7*x[2] + x[3]

]

[ 1, 1, 1, 1, 2187, 78125, 1, 1/2187, 78125, 78125/823543, 128/2187, 1/16384 ]

Time: 52937.280

In general all these functions work faster on a finite field than on the field of rational numbers. This
difference is particularly appreciable for the function Septic.

The function TensorOfRank generates a random mixed tensor. The functions IsIdentifiable and
IdentifyForms are based on Algorithm 7.3. The first determines if a tensor is identifiable, while
the second actually computes the linear forms in the decomposition of an identifiable tensor. In the
following example we consider a homogeneous polynomial of degree three in four variables of rank five.

> load "library.m";

> Q := Rationals();

> T,lis,coef,f := TensorOfRank([3],[3],5,Q);

> time IsIdentifiable([3],[3],[1],T,5,Q);

true

Time: 0.110

> time IdentifyTensor([3],[3],T,5,Q);

[

[

x[1] - 21/10*x[2] + 2*x[3] + 2*x[4]

],

[

x[1] + 7/10*x[2] + 1/10*x[3] + 21/20*x[4]

],

[

x[1] - 21/2*x[2] - 3/7*x[3] - 27*x[4]

],

[

x[1] + 5/6*x[2] + 5/21*x[3] + 8/9*x[4]

],

[

x[1] + x[2] - 3/2*x[3] - 7/9*x[4]

]

]

[ -25/18, 1000/343, 1/36, -27/2, 1 ]

Time: 1.254

Next, we consider a tensor of rank five in K4 ⊗ K4 ⊗ K4.

> load "library.m";

> Q := Rationals();

> T,lis,coef,f := TensorOfRank([3,3,3],[1,1,1],5,Q);

> time IsIdentifiable([3,3,3],[1,1,1],[1,0,0],T,5,Q);

true

Time: 0.200

> time IdentifyTensor([3,3,3],[1,1,1],T,5,Q);

[

[

x[1] + 2*x[2] - 16/7*x[3] - 18/5*x[4],

x[5] + 18*x[6] - 7/5*x[7] + 10/3*x[8],

x[9] + 5/4*x[10] + 3*x[11] - 35/4*x[12]

],

[
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x[1] - 12/5*x[2] - 1/15*x[3] - 3/8*x[4],

x[5] + 12/5*x[6] + x[7] + 24*x[8],

x[9] + 24/35*x[10] - 27/20*x[11] + 3/40*x[12]

],

[

x[1] - 2/3*x[2] - 2/7*x[3] + 1/30*x[4],

x[5] - 5*x[6] + 9*x[7] + 5/3*x[8],

x[9] - 14/27*x[10] - 7/9*x[11] + 7/9*x[12]

],

[

x[1] - 3/4*x[2] - 3/4*x[3] - 9/8*x[4],

x[5] + 6/7*x[6] + 5/9*x[7] - 16/9*x[8],

x[9] - 9*x[10] - 1/2*x[11] - 4/5*x[12]

],

[

x[1] + 15/8*x[2] - 35/36*x[3] + 1/12*x[4],

x[5] + 5/6*x[6] - 21/2*x[7] + 12*x[8],

x[9] + 20/21*x[10] + 1/15*x[11] + 2/9*x[12]

]

]

[ -1/2, 25/27, -27/70, -10/3, 6/5 ]

Time: 1.507

Finally, we give an example for a tensor of rank six in K5 ⊗ Sym2 K5.

> load "library.m";

> Q := Rationals();

> T,lis,coef,f := TensorOfRank([4,4],[1,2],6,Q);

> time IsIdentifiable([4,4],[1,2],[1,0],T,6,Q);

true

Time: 0.360

> time IdentifyTensor([4,4],[1,2],T,6,Q);

[

[

x[1] - 45/8*x[2] - 10*x[3] + 5*x[4] - 45/2*x[5],

x[6] + 5/9*x[7] - 25/9*x[8] - 10/9*x[9] + 25/63*x[10]

],

[

x[1] - 10/9*x[2] - 10/3*x[3] - 10/3*x[4] - 6*x[5],

x[6] + 10/7*x[7] + 50/63*x[8] - 40/9*x[9] + 5/9*x[10]

],

[

x[1] - 1/2*x[2] + 1/5*x[3] - 8/45*x[4] - 3/5*x[5],

x[6] + 2/5*x[7] + 9/40*x[8] + 1/25*x[9] - 8/5*x[10]

],

[

x[1] + 1/2*x[2] - 2/5*x[3] - 1/3*x[4] + 7/4*x[5],

x[6] + 3/4*x[7] + 9/8*x[8] - 3/4*x[9] - 3/5*x[10]

],

[

x[1] + 9/20*x[2] + 27/70*x[3] - 81/80*x[4] + 3/5*x[5],

x[6] + 10/27*x[7] + 2/9*x[8] - 2/15*x[9] + 7/3*x[10]

],

[

x[1] - 8/5*x[2] - 36/35*x[3] - 8/7*x[4] - 2/15*x[5],

x[6] + 2/5*x[7] + 16/35*x[8] + 4/15*x[9] - 8/25*x[10]

]

]

[ 54/125, 243/500, 125/2, 2, -5/2, -625/144 ]

Time: 2.073
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Rick Rischter, Universidade Federal de Itajubá (UNIFEI), Av. BPS 1303, Bairro Pinheirinho, 37500-
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