: Alzheimer's disease (AD) is a progressive neurodegenerative disorder pathologically characterized by brain parenchymal abundance of amyloid-beta (Aβ) and the accumulation of lipofuscin material that is rich in neutral lipids. However, the mechanisms for aetiology of AD are presently not established. There is increasing evidence that metabolism of lipoprotein-Aβ in blood is associated with AD risk, via a microvascular axis that features breakdown of the blood-brain barrier, extravasation of lipoprotein-Aβ to brain parenchyme and thereafter heightened inflammation. A peripheral lipoprotein-Aβ/capillary axis for AD reconciles alternate hypotheses for a vascular, or amyloid origin of disease, with amyloidosis being probably consequential. Dietary fats may markedly influence the plasma abundance of lipoprotein-Aβ and by extension AD risk. Similarly, apolipoprotein E (Apo E) serves as the primary ligand by which lipoproteins are cleared from plasma via high-affinity receptors, for binding to extracellular matrices and thereafter for uptake of lipoprotein-Aβ via resident inflammatory cells. The epsilon APOE ε4 isoform, a major risk factor for AD, is associated with delayed catabolism of lipoproteins and by extension may increase AD risk due to increased exposure to circulating lipoprotein-Aβ and microvascular corruption.

Peripheral metabolism of lipoprotein-amyloid beta as a risk factor for Alzheimer's disease: potential interactive effects of APOE genotype with dietary fats

Vaccarezza, Mauro
Penultimo
Writing – Review & Editing
;
2023

Abstract

: Alzheimer's disease (AD) is a progressive neurodegenerative disorder pathologically characterized by brain parenchymal abundance of amyloid-beta (Aβ) and the accumulation of lipofuscin material that is rich in neutral lipids. However, the mechanisms for aetiology of AD are presently not established. There is increasing evidence that metabolism of lipoprotein-Aβ in blood is associated with AD risk, via a microvascular axis that features breakdown of the blood-brain barrier, extravasation of lipoprotein-Aβ to brain parenchyme and thereafter heightened inflammation. A peripheral lipoprotein-Aβ/capillary axis for AD reconciles alternate hypotheses for a vascular, or amyloid origin of disease, with amyloidosis being probably consequential. Dietary fats may markedly influence the plasma abundance of lipoprotein-Aβ and by extension AD risk. Similarly, apolipoprotein E (Apo E) serves as the primary ligand by which lipoproteins are cleared from plasma via high-affinity receptors, for binding to extracellular matrices and thereafter for uptake of lipoprotein-Aβ via resident inflammatory cells. The epsilon APOE ε4 isoform, a major risk factor for AD, is associated with delayed catabolism of lipoproteins and by extension may increase AD risk due to increased exposure to circulating lipoprotein-Aβ and microvascular corruption.
2023
D'Alonzo, Zachary J; Lam, Virginie; Takechi, Ryu; Nesbit, Michael; Vaccarezza, Mauro; Mamo, John C L
File in questo prodotto:
File Dimensione Formato  
D'Alonzo Vaccarezza Mamo.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2504991
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact