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Abstract 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder pathologically characterized by brain paren-
chymal abundance of amyloid-beta (Aβ) and the accumulation of lipofuscin material that is rich in neutral lipids. 
However, the mechanisms for aetiology of AD are presently not established. There is increasing evidence that metab-
olism of lipoprotein-Aβ in blood is associated with AD risk, via a microvascular axis that features breakdown of the 
blood-brain barrier, extravasation of lipoprotein-Aβ to brain parenchyme and thereafter heightened inflammation. 
A peripheral lipoprotein-Aβ/capillary axis for AD reconciles alternate hypotheses for a vascular, or amyloid origin of 
disease, with amyloidosis being probably consequential. Dietary fats may markedly influence the plasma abundance 
of lipoprotein-Aβ and by extension AD risk. Similarly, apolipoprotein E (Apo E) serves as the primary ligand by which 
lipoproteins are cleared from plasma via high-affinity receptors, for binding to extracellular matrices and thereafter 
for uptake of lipoprotein-Aβ via resident inflammatory cells. The epsilon APOE ε4 isoform, a major risk factor for AD, is 
associated with delayed catabolism of lipoproteins and by extension may increase AD risk due to increased exposure 
to circulating lipoprotein-Aβ and microvascular corruption.

Keywords  Amyloid-beta, Lipoprotein, Vascular, Saturated fat, Nutrition, Dementia, Genetic, APOE, Alzheimer’s disease

Statement of significance
This review critically analyses an alternative pathway of 
AD known as the ‘vascular hypothesis’ and, for the first 
time, will identify SFA and APOE genotype as risk factors 

for AD through their putative roles in increase plasma 
L-sAβ.

Introduction
Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder that accounts for approximately 70% of 
dementia and presently affecting in excess of 35 million 
[1]. Global prevalence of AD is increasing and is strongly 
associated with ageing [2]. There is also accumulating 
evidence that lifestyle choices including exercise, sleep 
and particularly diet are associated with heightened AD 
risk [3–9].

An equivocal diagnosis of AD is based on later-in-
disease evidence of cerebral toxic lipofuscin aggregates 
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within the central nervous system (senile plaque) that 
are enriched in the protein amyloid-beta (Aβ) neutral 
lipids and metals [10, 11]. However, microvascular 
disturbances and cognitive impairment are ordinar-
ily indicated many years preceding frank amyloidosis 
and neutral lipid aggregation [12, 13], suggesting that 
a ‘soluble’-amyloid-microvascular-lipid axis triggers the 
onset and progression of sporadic AD.

An increasing number of studies report that blood 
measures of soluble-Aβ in cognitively healthy subjects 
can predict risk for AD at later age [14–19]. Specifi-
cally, the relative abundance of the Aβ1-42 relative to the 
Aβ1-40 isoform is reported by several laboratories to 
be a sensitive surrogate marker of AD risk in later life. 
Fandos et  al. reported that in cognitively normal indi-
viduals, Aβ1-42/Aβ1-40 was associated with higher lev-
els of cerebral Aβ plaques [20]. Plasma Aβ biomarkers 
were also described by Rembach et al. in predicting AD 
association, with baseline Aβ1-42/Aβ1-40 ratios associ-
ated with future cognitive decline [19].

Differences in the concentration of Aβ isoforms in 
blood may reflect changes in brain efflux of Aβ from 
cerebrospinal fluid to blood and therefore be indicative 
of central changes in amyloid metabolism. However, 
there is an accumulating body of evidence that plasma 
Aβ principally reflects changes in peripheral synthesis, 
secretion and metabolism of Aβ as an apoprotein of 
lipoproteins that are secreted from peripheral lipogenic 
organs [21–28].

This focussed review article considers contemporary 
evidence supporting the hypothesis that AD is associ-
ated specifically with aberrant peripheral metabolism 
of lipoprotein-Aβ. Herein, we extend the hypothesis to 
consider putative interactive effects of APOE genotype 
with specific dietary fats for onset and progression of 
AD.

Peripheral metabolism of amyloid‑beta
Greater than 90% of blood Aβ1-40 and 97% of blood 
Aβ1-42 are associated with plasma lipoproteins [29]. 
Liver hepatocytes and small intestinal enterocytes (the 
site of dietary fat absorption) secrete Aβ associated with 
nascent very-low-density lipoproteins (VLDL) and chy-
lomicrons, respectively [21, 30] (Fig. 1). Aβ is suggested 
to serve as a regulating apoprotein of triglyceride-rich 
lipoproteins (TRL), although few studies have investi-
gated this directly. Consistent with the latter, in animal 
models, dietary-fat-induced lipogenesis was found to 
stimulate Aβ synthesis and secretion into blood and in 
other studies; obesity was reported to be positively asso-
ciated with circulating Aβ and increased expression of 
amyloid precursor protein in adipocytes [31–33].

There is a paucity of studies that have investigated 
plasma lipoprotein-Aβ homeostasis in the context of 
AD risk per se. In a relatively small study, it was reported 
that patients with AD had greater net abundance of 
lipoprotein-Aβ in blood compared to aged-matched 
controls, particularly indicated within the triglyceride-
rich fraction of plasma lipoproteins [34]. Moreover, 
the authors reported that in response to a dietary fat 
challenge, the AD subjects had a fourfold exaggerated 
post-prandial chylomicron response, compared to aged-
matched controls. Additionally, several studies have 
reported dietary affects on plasma Aβ levels [35–37]; 
therefore, repeated cycles of potentially exaggerated post-
prandial hyperamyloidemia generated through diet could 
notionally accelerate lipoprotein-Aβ-induced breakdown 
and inflammation of the neurovascular unit (Fig. 1).

Nutrition and Alzheimer’s disease
There is a substantial body of evidence through popu-
lation; clinical and preclinical studies that demonstrate 
nutritional status influence risk for and progression of 

(See figure on next page.)
Fig. 1  Proposed plasma lipoprotein-amyloid effects on the neurovascular unit. Dietary fats are absorbed as nonesterified fatty acids on the apical 
membrane of duodenal enterocytes, re-sterified and transiently stored as cytoplasmic lipid droplets. Chylomicron assembly is continuous but 
can be stimulated by accumulation of enterocytic lipids. Nascent chylomicrons (CM) are secreted into lymphatics with apoproteins, including 
amyloid-beta (Aβ), which regulate CM metabolism. In circulation, triglyceride-rich CM are progressively hydrolyzed by endothelial lipoprotein 
lipase, abundant on the plasma membrane of capillary endothelia. Triglyceride-depleted CM remnants (RM) are cleared from blood via an 
ApoE-dependent high-affinity processes, principally via the LDL receptor which is expressed in abundance on liver hepatocytes. The residual 
delivery of CM lipids stimulates genesis of nascent very-low-density lipoproteins (VLDL), which like CM are rich in triglyceride and share the 
same metabolic pathway of lipase-mediated hydrolysis and remnant clearance. VLDL-Aβ secretion may also be exaggerated because of genetic 
or endocrine-based comorbidities. Exaggerated abundance of lipoprotein-Aβ (CM-Aβ & VLDL-Aβ) is associated with capillary dysfunction, 
including attenuation of tight junction proteins and extravazation to brain parenchyme of the lipoprotein-amyloid. ApoE anchors the Aβ 
containing lipoprotein remnants to extracellular matrices and thereafter for receptor and phagocytic uptake of remnant lipoproteins by glia 
and monocyte-derived macrophages. Lysosomal degradation within the macrophage results in lipoprotein breakdown and protein hydrolylsis 
concomitant with the release of inflammatory cytokines and prooxidants. Focal inflammation and oxidative stress compromises neuronal cell 
integrity. Amyloid liberation within the cell and/or following macrophage cell death heightens propensity for Aβ aggregation. Diets enriched 
in saturated fatty acids may drive lipoprotein-Aβ synthesis and secretion, compromise the capillary endothelia and increase endoplasmic 
reticulum and mitochondrial stress. ApoE E4 relative to ApoE E3 may slow hydrolysis of triglyceride lipolysis and have lower affinity for hepatic 
receptor-mediated clearance pathways. Increased ApoE E4-mediated capillary exposure to lipoprotein-Aβ exacerbates capillary stress. ApoE E4 may 
regulate binding to matrices or regulate phagocytic uptake by inflammatory cells
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Alzheimer’s disease. Broad mechanisms may include 
modulation of neurovascular inflammation [7], through 
epigenetic factors and neurotransmitter modulation 
[38]. Nutritional homeostasis is critical for cell metab-
olism and bioenergetics, and indirect modulation of 
diet and AD risk includes maintaining a healthy body 
weight and reducing vascular risk factors [39]. Contem-
porary studies also suggest a gut/brain axis via dietary 
modulation of the gut microbiota [40].

Saturated fatty acids and Alzheimer’s disease risk
Diets enriched in fat have been associated with height-
ened AD risk [41, 42]. Previous longitudinal studies 
have identified that individuals with a higher intake of 
saturated fatty acids (SFA) relative to unsaturated fatty 
acids had an increased risk of developing mild-cognitive 
impairment (MCI) and AD later in life [43–46]. The 
cardiovascular risk factors, ageing and dementia study 
aimed to identify a link between dietary fat consumption 
at midlife and subsequent effects on cognitive function. 

Fig. 1  (See legend on previous page.)
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Eskelinen et al. discovered after a mean follow-up time of 
21 years that chronic consumption of SFA-rich foods was 
associated with a reduction in global cognition, prospec-
tive memory and an increased risk of MCI [43]. Moreo-
ver, a recent meta-analysis of prospective cohort studies 
identified a link between SFA and AD, with individu-
als chronically consuming a diet richer in SFA having a 
greater risk of developing AD [47].

To investigate potential mechanisms underlying a puta-
tive link between dietary SFA, the peripheral metabo-
lism of lipoprotein-Aβ and risk for AD, in preclinical 
studies, wild-type mice were randomized to chronically 
consume diets enriched in either saturated, polyunsatu-
rated or unsaturated triglyceride. It was found that mice 
ingesting the SFA-rich diet had significantly increased 
Aβ abundance colocalized with apolipoprotein (Apo) B 
within the perinuclear region of enterocytes, the site of 
chylomicron synthesis [30]. Apo B is an obligatory pro-
tein necessary for secretion of nascent TRL from hepat-
ocytes and enterocytes. Exaggerated chylomicron-Aβ 
secretion in SFA fed mice was also associated with break-
down of the blood-brain barrier (BBB), resulting in brain 
parenchymal extravasation of plasma proteins includ-
ing plasma-derived lipoprotein-amyloid, neurovascu-
lar inflammation, neuronal degeneration and cognitive 

impairment, indicated by activation of astrocytes and 
microglia [48] (Fig.  1). In contrast, mice randomized to 
a diet enriched in unsaturated, or polyunsaturated fatty 
acids, had no evidence of increased lipoprotein-Aβ gen-
esis and with preservation of cerebral capillary integrity 
and cognitive function. The differential effects of nonest-
erified fatty acids in the wild-type mice provide insight as 
to the potential mechansism underlying the association 
of SFA with AD reported in population studies.

Lipoprotein‑amyloid beta metabolism and Alzheimer’s 
disease
Strong evidence of a lipoprotein-Aβ cascade hypothesis 
for cerebral capillary corruption and cognitive decline 
was very recently demonstrated in C57BL/6J mice that 
were genetically engineered to secrete exclusively from 
the liver, human-Aß (hAß) as an apoprotein of nascent 
VLDL [21]. The liver-specific amyloid transgenic mice 
had VLDL-hAβ at concentrations in blood that were 
physiologically relevant but nonetheless showed marked 
neurovascular inflammation and astrogliosis (Fig. 2) and 
cerebral accumulation of amyloid compared to control 
mice. Liver-specific amyloid transgenic mice also had 
accelerated evolution of otherwise naturally occurring, 
but potentially cytotoxic, age-associated lipid-inclusion 

Fig. 2  Three-dimensional confocal immunomicrographs of Apo B, GFAP, Iba1 and lipids. Apo B (yellow), activated astrocytes (GFAP; green) 
and activated microglia (Iba1; magenta) were all measured in the hippocampus of wild-type (WT) control mice and hepatic-specific-human 
amyloid (HSHA) mice (cell nuclei indicated in blue), with lipid inclusion bodies (LIB’s) measured in the cerebral cortex. Apolipoprotein (Apo) B, an 
exclusive marker of hepatic and intestinally derived lipoproteins, was measured at 8 months whilst glial fibrillar acidic protein (GFAP) GFAP, ionized 
calcium-binding adaptor molecule 1(Iba1) and lipids were all measured at 6 months. Apo B, GFAP and Iba1 all use same scale; white scale bar = 
50 μm. LIBs of the cortex; black scale bar = 20 μm). WT, wild type; HSHA, hepatocyte-specific human amyloid; Apo B, apolipoprotein B; GFAP, glial 
fibrillary acidic protein; Iba1, ionized calcium-binding adaptor molecule 1; LIBs, lipid-inclusion bodies
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bodies (Fig.  2), particularly within the hippocampal 
formation, a region critical to episodic memory. The 
liver-specific amyloid transgenic mice had chronically 
exaggerated rates of neurodegeneration across their 
lifespan, resulting in premature and significant cognitive 
decline compared to aged-matched controls.

Clinical evidence of a peripheral lipoprotein-Aβ 
hypothesis as a risk factor for AD is supported in post-
mortem analysis of AD patient brains. Immunohis-
tochemical staining of Apo B, which is synthesized 
exlusively by hepatocytes and enterocytes, was clearly 
indicated within senile Aβ-rich plaques, consistent with 
causality [49].

Apolipoprotein E4 and synergistic effects with SFA may 
influence the metabolism of circulating L‑Aβ
In humans, ApoE exists in 3 isoforms, E2, E3 and E4, with 
a frequency of 7%, 78% and 15%, respectively [50]. ApoE 
E4 is an established risk factor for AD, increasing risk for 
early onset by 2.8 and 8-fold for hetero- and homozygo-
sity respectively [51, 52]. The mechanisms underlying the 
APOE ε4 association are not yet established. However, 
evidence of interactive effects of APOE genotype with 
diet is suggested by findings that younger APOE ε4 carri-
ers in preclinical stages may benefit mostly from lifestyle 
interventions, whereas older APOE ε4 noncarriers with 
dementia may show the most pronounced effects [53].

ApoE is predominantly synthesized in the liver and in 
blood and is lipidated. ApoE serves as the primary ligand 
for receptor-mediated clearance for triglyceride-depleted 
post-hydrolysed remnants of VLDL and chylomicrons 
[54] (Fig.  1). However, the APOE ε4 allele is associated 
with a distributional shift of ApoE E4 to lipoproteins 
richer in triglyceride, interfering in lipolysis and delaying 
catabolism and clearance from blood of the lipoprotein 
moiety [55–58]. We contend that it is a reasonable prop-
osition to suggest that an ApoE E4-mediated delay in 
metabolism and clearance of TRL remnant-Aβ may exac-
erbate age-associated microvascular sequale that lead to 
capillary breakdown and neurovascular inflammation 
(Fig.  2). Several recent studies support this hypothesis. 
Montagne et al. reported that individuals bearing APOE 
ε4 (with the ε3/ε4 or ε4/ε4 alleles) displayed breakdown 
of the BBB in the hippocampus and medial temporal lobe 
[59]. The finding was indicated in cognitively unimpaired 
APOE ε4 carriers and preceded classical AD pathology of 
frank cerebral amyloid deposition but was more severe 
in those with cognitive impairment. Indirect evidence 
comes from Liu et al., who showed that mice genetically 
engineered for human ApoE E4 restricted exclusively to 
liver compromised synaptic plasticity and cognition by 
compromising the cerebrovasculature [60]. Moreover, 
the APOE ε4 allele exacerbated amyloid brain pathology 

when cross-bred with amyloid transgenic mice. How-
ever, it remains to be determined whether heightened 
risk for AD associated with APOE ε4 reflects specifi-
cally a lipoprotein-Aβ-induced corruption of the cerebral 
microvasculature.

The effects of APOE ε4 genotype on modulating the 
metabolism of hepatically derived VLDL is mirrored in 
the catabolism of intestinally derived postprandial chy-
lomicrons, because they share the same catabolic cascade 
(Fig.  1). Limited studies suggest postprandial amyloi-
demia may occur in APOE ε4 versus APOE ε3 subjects. 
Six hours after ingestion of a lipid-rich meal, APOE ε4 
had threefold greater abundance in blood of intestinally 
derived chylomicrons (indicated as Apo B48) and 1.5-fold 
greater abundance of hepatically derived Apo B100, con-
sistent with previous reports of reduced clearance rates 
of post-hydrolysed remnants [61]. Interestingly, a simi-
lar postprandial triglyceride excursion was indicated for 
individuals with APOE ε4 and APOE ε3, consistent with 
the proposition that Aβ may have been elevated as a con-
sequence of decreased catabolic processes. Less clear 
is potential differential effects of the apo E-dependent 
interaction with brain parenchymal cellular matrices and 
uptake by glia.

Conclusion
There is an accumulating body of evidence that micro-
vascular disruption is the first pathological feature real-
ized in AD. Loss of barrier function is associated with 
neurovascular inflammation and neurodegeneration. 
Less clear is what accelerates age-associated cerebral cap-
illary breakdown. Several studies suggest that peripheral 
blood homeostasis of Aβ, particularly associated with 
lipoproteins rich in triglyceride, regulate capillary integ-
rity. Exaggerated vascular exposure to lipoproteins-Aβ 
is associated with loss of tight junction proteins, brain 
parenchymal extravasation of plasma proteins including 
lipoprotein-Aβ, brain atrophy and cognitive impairment.

In preclinical studies, it has been shown that dietary 
SFA increase the plasma abundance of lipoprotein-Aβ 
concomitant with capillary dysfunction. Clinical studies 
showing a delayed catabolism of nascent triglyceride-
rich lipoproteins, which principally chaperone soluble 
Aβ in blood, suggest potential synergistic amplification 
of amyloidemia in blood and, by extension, microvas-
cular disruption. The collective body of evidence sug-
gests that attenuating the flux of systemic lipoprotein 
amyloid, particulary the remnants of triglyceride-rich 
lipoproteins, may confer microvascular protection and 
reduce risk for AD. Given the substantial knowledge of 
modulating peripheral metabolism of lipoproteins by 
lifestyle changes, lipid-lowering and apoprotein-targeted 
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pharmacotherapies, new opportunities to reduce risk for 
AD and slow progression may potentially be realized.

Contemporary dietary recommendations to reduce 
Alzheimer’s disease risk in the context of peripheral 
metabolism of lipoprotein‑Aβ
Authoratative reviews consistently recommend healthy 
diets such as Mediterranean style, featuring greater 
ingestion of polyunsaturated, monounsaturated and 
omega-3 fatty acids being associated with decreased 
inflammation, increased insulin sensitivity and brain-
derived neurotrophic factor [62–67]. Preclinical studies 
would predict that a Mediterranean diet would result in 
decreased synthesis and secretion of lipoprotein-Aβ and 
better preservation of the neurovascular junction [31, 48, 
68, 69]. Population studies investigating dementia and 
AD risk confirm the health benefits of a Mediterranean 
diet and conversely demonstrate that Western style diets 
richer in SFA promote neurovascular inflammation and 
suppress production of brain-derived neurotrophic factor 
(BDNF), an important molecule involved in learning and 
memory [70–74]. However, to date, population studies 
have not reported if chronic dietary behaviour influences 
peripheral lipoprotein-Aβ homeostasis and neurovascu-
lar integrity per se.

Excessive intake of carbohydrate, particularly high gly-
caemic index food commodities, is associated with dys-
lipidemia, as a consequence of increased lipogenesis and 
secretion of nascent TRL [75, 76]. Notionally, excessive 
carbohydrate intake may also be associated with exagger-
ated secretion into blood of lipoprotein-Aβ; however, this 
remains to be proven.

Adequate intake of micronutrients, polyphenols and 
antioxidants is associated with healthy ageing and is rela-
tive to dementia and AD risk [77–79]. The Mediterra-
nean and other tailored diets such as DASH and MIND 
are associated with better cognitive functioning and 
slower cognitive decline [80–82]. However, there are a 
paucity of studies that can shed insight into impact of 
specific micronutrients on lipoprotein-Aβ metabolism 
and the cerebral microvasculature.

Collectively, there is an accumulating and strong 
body  of evidence that adherence to brain-healthy diets 
can reduce risk for AD. However, whether the mecha-
nisms include positive modulation of the lipoprotein-Aβ/
capillary axis remains to be reported.
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