The localization spread gives a criterion to decide between metallic and insulating behavior of a material. It is defined as the second moment cumulant of the many-body position operator, divided by the number of electrons. Different operators are used for systems treated with open or periodic boundary conditions. In particular, in the case of periodic systems, we use the complex position definition, which was already used in similar contexts for the treatment of both classical and quantum situations. In this study, we show that the localization spread evaluated on a finite ring system of radius R with open boundary conditions leads, in the large R limit, to the same formula derived by Resta and co-workers [C. Sgiarovello, M. Peressi, and R. Resta, Phys. Rev. B 64, 115202 (2001)] for 1D systems with periodic Born-von Kármán boundary conditions. A second formula, alternative to Resta’s, is also given based on the sum-over-state formalism, allowing for an interesting generalization to polarizability and other similar quantities.
The localization spread and polarizability of rings and periodic chains
Angeli C.
Primo
;
2021
Abstract
The localization spread gives a criterion to decide between metallic and insulating behavior of a material. It is defined as the second moment cumulant of the many-body position operator, divided by the number of electrons. Different operators are used for systems treated with open or periodic boundary conditions. In particular, in the case of periodic systems, we use the complex position definition, which was already used in similar contexts for the treatment of both classical and quantum situations. In this study, we show that the localization spread evaluated on a finite ring system of radius R with open boundary conditions leads, in the large R limit, to the same formula derived by Resta and co-workers [C. Sgiarovello, M. Peressi, and R. Resta, Phys. Rev. B 64, 115202 (2001)] for 1D systems with periodic Born-von Kármán boundary conditions. A second formula, alternative to Resta’s, is also given based on the sum-over-state formalism, allowing for an interesting generalization to polarizability and other similar quantities.File | Dimensione | Formato | |
---|---|---|---|
JCP.155.124107.2021.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
5.11 MB
Formato
Adobe PDF
|
5.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.