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ABSTRACT
The localization spread gives a criterion to decide between metallic and insulating behavior of a material. It is defined as the second moment
cumulant of the many-body position operator, divided by the number of electrons. Different operators are used for systems treated with
open or periodic boundary conditions. In particular, in the case of periodic systems, we use the complex position definition, which was
already used in similar contexts for the treatment of both classical and quantum situations. In this study, we show that the localization spread
evaluated on a finite ring system of radius R with open boundary conditions leads, in the large R limit, to the same formula derived by Resta
and co-workers [C. Sgiarovello, M. Peressi, and R. Resta, Phys. Rev. B 64, 115202 (2001)] for 1D systems with periodic Born–von Kármán
boundary conditions. A second formula, alternative to Resta’s, is also given based on the sum-over-state formalism, allowing for an interesting
generalization to polarizability and other similar quantities.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0056226

I. INTRODUCTION
The position operator r̂ plays a crucial role in quantum

mechanics. Indeed, it is very often the key element to build the
potential operator. Moreover, in a single-particle description, it is
used to define multipole moments and polarizabilities. Finally, its
spread is one of the key ingredients that enter the Heisenberg uncer-
tainty principle. A similar crucial role occurs in many-particle sys-
tems. In this case, the one-body position operator r̂μ of each particle
μ can be combined in order to give the total-position operator

Q̂ = ∑
μ

r̂μ. (1)

This operator is, by definition, a quantity that refers to the entire
system as a whole. In a series of papers, Resta and co-workers1–4

and then Souza et al.,5 after an original idea that goes back to Kohn
more than 50 years ago,6 showed that the spread of the total posi-
tion, called by the authors localization tensor once it is divided by
the number of identical particles, is able to discriminate between

systems that behave as insulators or conductors in the thermody-
namic limit. Indeed, the per electron position spread (i.e., the local-
ization tensor) diverges in the case of metals, while it remains finite
for insulators. Some of us have recently used the localization ten-
sor to study the Wigner localization.7–9 However, it has been shown
that in some cases, border effects can play a very important role and
completely hide the behavior of the rest of the system.10,11 For this
reason, the extension of these ideas to periodic systems has attracted
much attention.12–15

In quantum mechanics, the spread of any operator Â is given
by the standard expression

¯̄A = ⟨Ψ∣Â2
∣Ψ⟩ − ⟨Ψ∣Â∣Ψ⟩2. (2)

When Â = Q̂, we get the total-position spread, denoted in the fol-
lowing as TPS. Indeed, this is the way the position spread is com-
puted for finite systems. We systematically calculated the TPS for
finite molecular systems, in which case, this quantity gives interest-
ing information on the nature of bonds and the mechanism of bond
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breaking.16–21 If the size of the system is systematically increased, the
thermodynamic limit can be computed by extrapolating finite calcu-
lations to the infinite-size limit.7,22–31 However, for practical reasons,
very large (“infinite”) systems are often described within the frame-
work of periodic or Born–von Kármán boundary conditions (in this
context), and this poses a subtle theoretical problem. Indeed, in the
Periodic Boundary Condition (PBC) formalism, the position opera-
tor is not a single-valued function because an infinite set of values of
the periodic coordinates corresponds to the same point in the sys-
tem. For this reason, the position spread for periodic systems must
be defined in a different way.

The problem was addressed by Resta, in the context of the so-
called modern theory of polarization.4 The central quantity is Û, the
exponential of the total position defined in Eq. (1), which is a N-
body operator, and it is used to define the localization spread λR.
In the case of a 1D system of N electrons and length L, one has the
following:

Û = exp
⎛

⎝

2πi
L

N

∑
j=1

xj
⎞

⎠
,

λR = −
L2

4π2N
ln ∣⟨Ψ∣Û∣Ψ⟩∣2.

(3)

Later, Sgiarovello et al. derived a formula for the computation of the
thermodynamic limit of Eq. (3) for a determinantal wave function
and applied it to some crystalline systems.32

We recently addressed this problem by adopting a different
strategy.33 We note that all functions of the position that have the
same periodicity of the whole system are perfectly acceptable quanti-
ties. This is the case, for instance, for the periodic potentials defined
for these types of systems. Our approach (see Refs. 9 and 33) is to
redefine the one-particle position operator itself, essentially replac-
ing the position by the imaginary exponent of the position. In doing
that, one must assure two basic requirements:

1. The new operator must have the same periodicity as the PBC
system.

2. The difference between two operators corresponding to fixed
values of the coordinates must tend, in the limit of infinite sys-
tem and up to a phase factor, to the corresponding difference
obtained from the ordinary position operator.

The above conditions can be satisfied in different ways. In our pre-
vious work (Ref. 33), we defined a complex position operator as

q̂L(x) =
L

2πi
[e

2πi
L x
− 1]. (4)

This choice has the advantage that q̂L(x) reduces to the standard
position operator when x/L≪ 1, i.e., q̂L(x) = x. In the present con-
text, we compute a cumulant of the square norm of the position.
Because of this fact, the constant shift − L

2π in Eq. (4) and the imagi-
nary unit can be dropped. In the case of a 1D system of length L, we
can simply use the following quantity:

q̂x =
L

2π
e

i2πx
L . (5)

We note that this definition of the position is not restricted
to the quantum-mechanics context. Indeed, it has been used in

classical physics in order to perform Madelung sums for ionic sys-
tems34,35 and to compute the classical energy and harmonic and
anharmonic corrections of Wigner crystals.36 In Appendix C, a
detailed discussion on the choice of the position operator for peri-
odic systems is presented.

In this paper, we assume a slightly different starting point.
We consider the localization spread of a ring system with the open
boundary conditions (OBCs) where the definition of Eq. (2) holds,
and we obtain the same results one gets with the complex position
operator of Eq. (5) for a periodic system. Moreover, we also get the
formula of Ref. 32, which was derived from the formalism of Resta.
In detail, we can summarize the scheme of the present paper as fol-
lows, which is concerned with rings with OBC and 1D systems with
PBC: we first derive formulas for the TPS and the polarizability of
a one-determinant wave function of many electrons in a ring under
a potential of Cn symmetry; then, thanks to the isomorphism of Cn
and the translation in a 1D system with Born–von Kármán PBC, all
the treatment extends to the latter; the formula for the TPS shows
that a partially filled band leads to a per electron TPS diverging
in the thermodynamic limit; the formula for the TPS is alternative
but equivalent to the Sgiarovello–Peressi–Resta32 one for a complete
orbital basis; finally, we show applications to the Hückel wave func-
tion for dimerized annulene and cyclacene, where closed analytical
solutions are found. This approach is called tight-binding (TB) in
the physical literature.

For the sake of simplicity, as previously said, we will focus on
one dimension in the whole of this paper and the generalization to
higher dimensions will be addressed in forthcoming papers. Finally,
we stress the fact that atomic units (bohr, hartree, etc.) will be used
in the whole of the presentation.

II. PARTICLES IN A RING UNDER A PERIODIC
POTENTIAL (Cn)
A. General considerations

Let us consider a system of non-interacting electrons moving in
a ring of length L and radius R = L/2π and subject to a non-constant
potential U of Cn symmetry. Its wave function will be a Slater deter-
minant of spin–orbitals that can be taken to be eigenfunctions of Ĉn,
the anticlockwise rotation of 2π/n around the center of the ring. The
structure of such orbitals is that of Bloch orbitals for 1D periodic sys-
tems (see the supplementary material for details). This is due to the
isomorphism of the Cn group generated by the in-plane rotation Ĉn
of an angle 2π/n and the group Tn generated by the translation t̂d of
a displacement d when acting on the space of periodic functions of
period L = nd, according to the Born–von Kármán boundary condi-
tions. Actually, these two groups are both examples of finite cyclic
groups, and this is the reason of the isomorphism.37,38

The eigenfunctions of Ĉn have the following Bloch structure:

ψ(s) = ψk(s) = e
2πiks

L uk(s) = eiKs u(s, K), (6)

where uk(s) = uk(s + d) is a periodic function and k is an integer
defined mod n. In order to conform to the solid-state literature,
we introduced the (discrete) variable K = 2πk

L and the alternative
notation u(s, K) for uk(s). The structure of the function given in
Eq. (6) can be described as a plane wave modulated by a periodic
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factor u(s, K). The discrete variable K becomes (quasi-)continuous
for large n.

The proper definitions of the orbitals taking into account nor-
malization are given in the following two notations:

integer k : ψk(s) =
1
√

n
e

2πiks
nd uk(s), (7)

K =
2πk
nd

: ψ(s, K) =
1
√

n
eiKs u(s, K). (8)

B. Approximate wave functions
Exact solutions of the Schrödinger equation with a periodic

Hamiltonian are known only in exceptional cases, and in practice,
one resorts to variational treatments by expanding the orbitals in
suitably chosen basis functions, such as in the well-known LCAO
approximation. We place in each cell μ, a number nc of basis func-
tions χj(s), j = 1, 2, . . . , nc centered in nc points s1μ, s2μ, . . . , sncμ,
sjμ = sj0 + μd. We introduce the symmetry-adapted basis functions

bkj(s) = ∑
n−1
μ=0 e

2πikμ
n χj(s − sjμ)

= eiKs
∑

n−1
μ=0 e

2πik(μd−s)
nd χj(s − sjμ), j = 1, 2, . . . , nc,

Ĉn bkj(s) = ∑
n−1
μ=0 e

2πikμ
n χj(s − sjμ+1).

(9)

The total number of bkj’s is n × nc.
The matrix elements of the overlap S and the Hamiltonian Ĥ in

the symmetry-adapted basis are as follows:

⟨bkj∣bk′j′⟩ = δkk′∑
μμ′

e
2πik(μ′−μ)

n ⟨χjμ∣χj′μ′⟩, (10)

⟨bkj∣Ĥ∣bk′j′⟩ = δkk′∑
μμ′

e
2πik(μ′−μ)

n ⟨χjμ∣Ĥ∣χj′μ′⟩. (11)

Given that [Ĥ, Ĉn] = 0, the matrix of Ĥ assumes a block structure:
there are n blocks Hk and Sk each of dimension nc × nc that can
be diagonalized to get the variational solution. If c1γ, c2γ, . . . , cncγ is
the γth eigenvector of Hk in the metric Sk, one has the variational
solution

ψγk(s) = N
nc

∑
j=1

cjγbkj(s) = N
n−1

∑
μ=0

e
2πikμ

n

nc

∑
j=1

cjγχj(s − sjμ), (12)

where N is the normalization constant. The wave function in
Eq. (12) can be rewritten in the form reported in Eq. (8) with its
periodic factor defined as follows:

uγ(s, K)=
n−1

∑
μ=0

e
2πik(μd−s)

nd ∑
j

cjγ(K)χj(s − sjμ). (13)

From Eq. (11), one finds that the blocks Hk and H−k are
complex conjugated, but both are Hermitian matrices, so their

eigenvalues are the same. The corresponding eigenfunctions can be
grouped in couples with the same energy and behave like degenerate
eigenvectors belonging to a two-dimensional IR of a non-Abelian
group. Besides the variational treatment, further approximations
may be adopted to simplify the computation of the matrix elements
of the Hamiltonian matrix. As a limit case of such an approach, we
may consider the well-known Hückel model. The expansion basis
contains site functions χ centered in a point Pjμ with which are sup-
posed to be orthonormal eigenfunctions of the position operators.
This is the common practice although these site functions are rather
awkward mathematical objects; see, e.g., Ref. 39. Accordingly, χ’s
are everywhere vanishing but in P. As concerns the Hamiltonian
matrix elements in this basis, they are treated as adjustable param-
eters assumed to be zero except for χ functions placed on nearest
neighbor sites. In solid-state physics, such Hamiltonian parameters
are known as hopping integrals and denoted by the symbol t, while
in quantum chemistry, the name resonance integral and the symbol
β = −t are preferred. The advantage of the Hückel model is its exact
solubility in a number of cases, combined with an ability to gain an
insight into the electronic structure and properties.40 This is the rea-
son why the examples we provide are concerned with Hückel wave
functions.

C. The TPS of n electrons in a ring
We now consider an n-electron determinantal wave functionΦ

constructed using the Bloch orbitals defined in Eq. (6) and the total
position operators

X̂ =
n

∑
j=1

xj, Ŷ =
n

∑
j=1

yj. (14)

The TPS tensorΛ of a ring is diagonal, and its xx and yy components
are equal;41 for this reason, we may consider its trace

Tr(Λ) = Λxx +Λyy

= ⟨Φ∣X̂X̂+ŶŶ ∣Φ⟩ − ⟨Φ∣X̂∣Φ⟩2 − ⟨Φ∣Ŷ ∣Φ⟩2

= ⟨Φ∣(X̂ ± iŶ)(X̂ ∓ iŶ)∣Φ⟩. (15)

In Eq. (15), we introduced the operators X̂ ± iŶ in order to take
advantage of the Cn symmetry of the system, which ensures that
⟨Φ∣X̂∣Φ⟩ = ⟨Φ∣Ŷ ∣Φ⟩ = 0 and ⟨Φ∣X̂Ŷ ∣Φ⟩ = 0. One can show (see the
supplementary material) that the operator x ± iy shifts by one unit
the value of k associated with a Bloch orbital,

(x ± iy)ψkγ(s) = R[cos(
s
R
) ± i sin(

s
R
)]e

2πiks
L ukγ(s)

= R e±
is
R e

2πiks
L ukγ(s)

= R e
2πi(k±1)s

L ukγ(s), (16)

where s is the arc length. More interesting, Eq. (16) shows that on a
circle of length L, one has

x ± iy =
L

2π
e±

2πis
L . (17)

This quantity is nothing but the complex position operator defined
in Eq. (5) for a periodic system of period L, where s is the
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ordinary position. Consequently, the results obtained in the sequel
for a ring with OBC can be transferred to a 1D system with PBC.
Equation (17) provides a new interpretation of the complex position
operator defined in Eq. (5).

The function ψ̃k±1,γ = (x ± iy)ψkγ will not be, in general, an
eigenfunction of Ĥ because of the mismatch between the quantum
number k of ukγ(s) and that of the associated plane wave. However,
ψ̃k±1,γ is still an eigenfunction of Ĉn because it keeps the structure of
Eq. (6). The one-electron matrix elements of x ± iy are given by

⟨ψkγ∣x ± iy∣ψk′γ′⟩ = Rδk,k′∓1∫

d

0
uk,γ(s)

∗uk∓1,γ′ds. (18)

The operators X̂ ± iŶ transform a Slater determinant Φ into
a sum of single excitations by replacing each occupied spin orbital
ψkγσ with ψ̃k±1,γσ . In order to simplify the notation, we introduce a
multi-index j = kγσ to address the spin orbital ψkγσ and ̃ for the spin
orbital (x ± iy)ψkγσ ,

(X̂ ± iŶ)Φ = ∑
j
Φ̃

j . (19)

In Eq. (19), multi-indexes j, ̃ span the occupied spin–orbitals and
Φ̃

j denotes the single excitation ψj → (x + iy)ψj. By noting that

⟨Φ∣Φ̃
j ⟩ = ⟨ψkγ∣x ± iy∣ψkγ⟩ = 0 because of Eq. (18), one has

⟨Φ∣X̂ ± iŶ ∣Φ⟩ = 0. (20)

Indeed, each determinant is an eigenfunction of Ĉn, and its eigen-
value is the sum of the k quantum numbers of the occupied spin
orbitals. Accordingly, all excitations in Eq. (19) differ by one unit in
k from Φ and Eq. (20) follows.

By using the result of Eq. (20), Eq. (15) can be written as follows:

Tr(Λ) = ⟨Φ∣(X̂ ± iŶ)(X̂ ∓ iŶ)∣Φ⟩ = ⟨∑
j
Φ̃

j ∣∑
j′
Φ̃′

j′ ⟩, (21)

where j, j′ span the occupied spin orbitals. To compute Eq. (21), we
consider the following two possibilities:

1. We compute Eq. (21) directly involving only occupied
orbitals.

2. Sum over states: we expand each ∑jΦ
̃
j in the space spanned

by the usual single excitation from occupied to virtual spin
orbitals.

1. Direct computation
In order to compute Eq. (21), we use the following results:

⟨Φ̃
j ∣Φ

̃′

j′ ⟩ =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

⟨ψ̃j∣ψj⟩⟨ψj′ ∣ψ̃j′⟩ if j ≠ j′,

⟨ψ̃j∣ψ̃j⟩−∑
m≠j
⟨ψ̃j∣ψm⟩⟨ψm∣ψ̃j⟩ if j = j′.

(22)

By noting that ⟨ψ̃j∣ψj⟩ = 0 because the two ψ’s correspond to differ-
ent eigenvalues of Cn, the double summation ∑jj′ becomes ∑j and
we find that

Tr(Λ) = ∑
j
⟨ψ̃j∣ψ̃j⟩ −∑

jm
⟨ψ̃j∣ψm⟩⟨ψm∣ψ̃j⟩

= ∑
j
⟨ψ̃j∣ψ̃j⟩ −∑

j
⟨ψ̃j∣P̂occ∣ψ̃j⟩, (23)

where P̂occ = ∑m∣ψm⟩⟨ψm∣ is the projection onto the occupied
orbital subspace because the multi-indexes j, m label the occupied
spin orbitals. Equation (23) separates in contributions from each
spin σ = αorβ as follows:

Tr(Λ)σ =
⎡
⎢
⎢
⎢
⎢
⎣

∑
γk
(⟨ψ̃kγ∣ψ̃kγ⟩ − ⟨ψ̃kγ∣P̂occ∣ψ̃kγ⟩)

⎤
⎥
⎥
⎥
⎥
⎦σ

= ∑
γk

Tr(Λ)γkσ , (24)

where only occupied orbitals of the given spin are involved in the
sums. Equation (24) shows the contribution Tr(Λ)γkσ of each occu-
pied spin orbital to Tr(Λ), and we note that it cannot be negative
because 1 − P̂occ is a projection. Then, we find that

⟨ψ̃kγ∣ψ̃kγ⟩ = R2
∫

d

0
uk∓1,γ(s)

∗ uk∓1,γ(s) ds

= R2
= (

nd
2π
)

2

. (25)

As concerns the second term, ⟨ψ̃kγ∣P̂occ∣ψ̃kγ⟩, of Eq. (24), by taking
into account Eq. (18), it can be rewritten as follows:

⟨ψ̃kγ∣1 − P̂occ∣ψ̃kγ⟩ = ⟨ψ̃kγ∣ψ̃kγ⟩ −∑
γ′
⟨ψ̃kγ∣ψk±1γ′⟩⟨ψk±1γ′ ∣ψ̃kγ⟩

= R2⎛

⎝
1 −∑

γ′
∣∫

d

0
ukγ(s) uk±1γ′(s)ds∣

2⎞

⎠
, (26)

where all indexes refer to occupied orbitals of the given spin. In
this connection, we point out an essential difference between com-
pletely and partially filled bands. Consider a partially filled band up
to a Fermi value kF , the orbital ψ̃kFγ will have zero projection in the
occupied space of the band γ′ = γ, while this is not the case in a com-
pletely filled band because k is defined mod n. Therefore, Tr(Λ)γkFσ

diverges for n→∞ as R2
= O(n2

) and the localization per electron
Tr(λ)σ = Tr(Λ)σ/(ncn) will diverge as O(n) for n→∞.

Equation (26) can be used to compute numerically Tr(λ)σ for
a finite system; in the case of a partly filled band, the sum ∑γ′ is
missing for some value of k and γ′ = γ. As concerns the other values
of k and γ′, in order to compute the limit for n→∞, it is convenient
to use the variable K = 2πk/(nd) instead of k and consider uk,γ(s) as
a function of the continuous variable K,

uk,γ(s) ↔ uγ(s, K),

uk±1,γ(s) ↔ uγ(s, K ± ΔK),
(27)

where ΔK = 2π/(nd). Now, for large n, we write
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uγ(s, K ± ΔK) = uγ(s, K) ±
2π
nd

∂uγ
∂K
+

2π2

n2d2
∂2uγ
∂K2 +O(n−3

), (28)

and therefrom,

∣⟨uk,γ∣uk±1,η⟩∣
2
= δγη ± δγη

2π
nd
(⟨uγ∣

∂uη
∂K
⟩ + ⟨

∂uη
∂K
∣uγ⟩)

+ (
2π
nd
)

2
⟨uγ∣

∂uη
∂K
⟩⟨

∂uη
∂K
∣uγ⟩

+
δγη
2
(

2π
nd
)

2
(⟨uγ∣

∂2uη
∂K2 ⟩ + ⟨

∂2uη
∂K2 ∣uγ⟩) + O(n−3

)

= δγη + (
2π
nd
)

2
⟨uγ∣

∂uη
∂K
⟩⟨

∂uη
∂K
∣uγ⟩

− δγη (
2π
nd
)

2
⟨
∂uγ
∂K
∣
∂uγ
∂K
⟩ + O(n−3

), (29)

where we used the relations ∂
∂k ⟨uKγ∣uK′γ′⟩ = 0 and ∂2

∂k2 ⟨uKγ∣uK′γ′⟩

= 0. For each value of k such that k ± 1 is occupied, Eq. (24) involves
the integrals ⟨ψk∓1 γ∣ψ̃kγ′⟩, and from Eq. (29),

Tr(λ)kσ =
1
n∑γ

⎧⎪⎪
⎨
⎪⎪⎩

R2
−∑

γ′
⟨ψk∓1γ∣ψ̃kγ′⟩⟨ψ̃kγ′ ∣ψk∓1 γ⟩

⎫⎪⎪
⎬
⎪⎪⎭

=
R2

n ∑γ

⎧⎪⎪
⎨
⎪⎪⎩

1 −∑
γ′
[δγγ′

+ (
2π
nd
)

2
⟨uγ∣

∂uγ′
∂K
⟩⟨

∂uγ′
∂K
∣uγ⟩

− δγγ′(
2π
nd
)

2
⟨
∂uγ
∂K
∣
∂uγ
∂K
⟩ + O(n−3

)]}

=
1
n

⎧⎪⎪
⎨
⎪⎪⎩

∑
γ
⟨
∂uγ
∂K
∣
∂uγ
∂K
⟩

− ∑
γγ′
⟨uγ∣

∂uγ′
∂K
⟩⟨

∂uγ′
∂K
∣uγ⟩ +O(n−1

)

⎫⎪⎪
⎬
⎪⎪⎭

. (30)

The quantity O(n−1
)/n in Eq. (30) when summed over all values of

occupied k’s [they are O(n)] gives a contribution O(n−1
) vanishing

for n→∞. Therefore, if no partially filled bands are present, one
derives the following formula for each spin:

lim
n→∞

Tr(Λ)σ
n

=
d

2π∫
K2

K1

⎛

⎝
∑
γ
⟨
∂uγ
∂K
∣
∂uγ
∂K
⟩

−∑
γγ′
⟨uγ∣

∂uγ′
∂K
⟩⟨

∂uγ′
∂K
∣uγ⟩
⎞

⎠
dK, (31)

where we replaced∑k by nd
2π ∫

K2
K1
⋅ ⋅ ⋅dK. In the case of nb doubly occu-

pied bands, we have 2nb electrons per cell, but Eq. (31) should be
multiplied by 2 to account for both spins. The final result is Eq. (31)

divided by nb, which is nothing but Eq. (16) of the paper by Sgiarov-
ello et al.32 The latter was obtained by working out the formalism of
Resta and Sorella2 for a determinantal wave function with PBC.

2. Sum over states
By inserting a completeness of the virtual space in Eq. (21), it

can be rewritten as follows:

Tr(Λ) = ∑
jl
∑
mv

⟨Φ̃
j ∣Φ

v
m⟩⟨Φ

v
m∣Φ

l̃
l ⟩, (32)

where multi-indexes j, l, m run over occupied spin orbitals and v

over virtual ones, v = {kv ,η, σ}. Given that ⟨Φv
m∣Φl̃

l ⟩ = ⟨ψv ∣ψ̃l⟩δlm

and using Eq. (18), we realize that the previous expression contains
the factor δkk′δγγ′δkv ,k∓1. In this way, we get, for each spin α and β,
the following contribution to Tr(Λ):

Tr(Λ)σ = ∑
k,γ,η
⟨(x ± iy)ψkγ∣ψk±1,η⟩⟨ψk±1,η∣(x ± iy)ψkγ⟩

= (
nd
2π
)

2

∑
kγη
∣∫

d

0
[uk,γ(s)]

∗uk±1,η(s)ds∣
2

= ∑
kγ

⎡
⎢
⎢
⎢
⎢
⎣

∑
η
(

nd
2π
)

2

∣⟨uk,γ∣uk±1,η⟩∣
2
⎤
⎥
⎥
⎥
⎥
⎦

= ∑
γk

Tr(Λ)γkσ , (33)

where k, γ run over occupied spin orbitals of the given spin σ and
η over virtual ones. Equation (33) gives an alternative expression of
the contribution of each spin orbital and can be used to numerically
compute Tr(Λ) for a given value of n. It should also be reminded
that the sum over virtual orbitals is, in principle, infinite because
the expansion of Φ̃

j in single excitations is exact, in general, only
when the orbital basis is complete. This condition is not, in gen-
eral, fulfilled in actual calculations of LCAO type, and this amounts
to an approximation. An exception is the Hückel method where
Eqs. (33) and (24) or (26) are strictly equivalent as a result of par-
ticular assumptions about the orbital basis. In order to examine
Eq. (33), we refer to Eq. (29) and point out the presence of δγη in
the right-hand side. Suppose that there is a band γ not completely
filled: virtual band index η can assume the value γ and generates
a diverging contribution (nd/2π)2

+O(1) for n→∞. In this way,
we show again the equivalence of two criteria for establishing the
metallic–insulating character of a system, namely, (1) fractionally
filled band and (2) divergence for n→∞ of the TPS/number of
electrons.

Let us now consider a system with completely filled bands
(insulator), for which δγη = 0 always. We replace ∑k by nd

2π ∫
K2

K1
dK

with K2 − K1 = 2π/d and obtain the final result for the contribution
of each spin to Tr(Λ),

Tr(Λ)σ =
nd
2π ∑γη

∫

K2

K1

⟨uγ∣
∂uη
∂K
⟩⟨

∂uη
∂K
∣uγ⟩ dK. (34)

It is clear from Eq. (34) that the TPS diverges for n→∞, as expected.
The TPS per electron is obtained by dividing Eq. (34) by the number
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of electrons ne. The latter is proportional to n; it can be expressed as a
function of the density ρ as ne = ndρ = Lρ or the number of occupied
bands nb times their occupation number no (1 or 2) and the number
of addends nk in∑k. For a system with only doubly filled bands, one
has nk = n, no = 2, ne = 2n nb,

Tr(Λ)α + Tr(Λ)β
2nnb

=
d

2πnb
∑
γη
∫

π/d

−π/d
⟨uγ∣

∂uη
∂K
⟩⟨

∂uη
∂K
∣uγ⟩dK, (35)

where nb is the number of doubly occupied bands, γ runs over
occupied, and η runs over virtual bands.

D. The polarizability
The static dipole polarizability tensor is given by42

αxy = 2⟨Φ0∣μx(H − E0)
−1
� μy∣Φ0⟩, (36)

where (H − E0)
−1
� is the reduced resolvent of the Hamiltonian in the

orthogonal complement to Φ0.
Let us consider the following quantity:

α = ⟨(X̂ ± iŶ)Φ∣(HK − E0)
−1
� ∣(X̂ ± iŶ)Φ⟩

= ⟨X̂Φ∣(HK − E0)
−1
� ∣X̂Φ⟩

+ ⟨ŶΦ∣(HK − E0)
−1
� ∣ŶΦ⟩

± i⟨X̂Φ∣(HK − E0)
−1
� ∣ŶΦ⟩

∓ i⟨ŶΦ∣(HK − E0)
−1
� ∣X̂Φ⟩. (37)

As shown in the Appendix A, the first two terms of Eq. (37) are equal,
while the last two are vanishing; this allows us to write the following:

αxx = ⟨∑
j
Φ̃

j ∣ (HK − E0)
−1
� ∣∑

j′
Φ̃′

j′ ⟩. (38)

In the subspace of single excitations, one has the following:

(HK − E0)
−1
= ∑

j,v

∣Φv
j ⟩⟨Φv

j ∣

ϵv − ϵj
, (39)

and for finite n and a given spin σ,

αxxσ = ∑
k,γ,η

⟨(x ± iy)ψkγ∣ψk±1,η⟩⟨ψk±1,η∣(x ± iy)ψkγ⟩

ϵk±1,η − ϵk,γ

= (
nd
2π
)

2

∑
kγη

∣∫
d

0 [uk,γ(s)]∗uk±1,η(s) ds∣
2

ϵk±1,η − ϵk,γ

= (
nd
2π
)

2

∑
kγη

∣⟨uk,γ∣uk±1,η⟩∣
2

ϵk±1,η − ϵk,γ
. (40)

For large n, we switch to the K variable also for ϵ [ϵk,η ↔ ϵη(K); see
Eq. (27)]. From Eq. (29) and provided that ϵk,η ≠ ϵk,γ, one has the
following:

(ϵk+1,η − ϵk,γ)
−1
= (ϵη(K) − ϵγ(K))−1

−
2π
nd
(ϵη(K) − ϵγ(K))−2 ∂ϵη

∂K
+O(L−2

), (41)

and we get that

∣⟨uk,γ∣uk±1,η⟩∣
2

ϵk±1,η − ϵk,γ
=

δγη
ϵη(K) − ϵγ(K)

+
2π
nd

⟨uγ∣
∂uη
∂K ⟩⟨

∂uη
∂K ∣uγ⟩

ϵη(K) − ϵγ(K)

+ δγη
2π
nd

∂ϵη
∂K

1
(ϵη(K) − ϵγ(K))2

+ (
2π
nd
)

2 ∂ϵη
∂K

⟨uγ∣
∂uη
∂K ⟩⟨

∂uη
∂K ∣uγ⟩

(ϵη(K) − ϵγ(K))2

− δγη(
2π
nd
)

2 ⟨
∂uγ
∂K ∣

∂uγ
∂K ⟩

ϵη(K) − ϵγ(K)
+O(L−3

). (42)

In the case of a band insulator with a gap separating the occu-
pied band γ from the virtual one η, the polarizability per unit cell is
given by

αxx =
d
π ∑γη

∫

π/d

−π/d

⟨uγ∣
∂uη
∂K ⟩⟨

∂uη
∂K ∣uγ⟩

ϵη(K) − ϵγ(K)
dK. (43)

In the case of a partially filled band γ = η, the denominator vanishes
at k = kF and the polarizability diverges.

III. EXAMPLES
Formulas (31) and (34) can be used for numerical computa-

tion, in general, but in the case of exactly solvable models, a symbolic
evaluation is possible. Here, we consider two examples: the Hückel
model of dimerized annulene and that of cyclacene. The orbitals ψ
are linear combinations of site functions χ(P) centered in point P as
previously pointed out in Sec. II B.

A. Dimerized annulene
The Hückel model for dimerized annulene of length L = nd

consists of n units or cells, each containing two sites and one-
electron per site. The sites are assumed to be equally separated but
connected by bonds of different strength described by two resonance
integrals β1,β2. The dimerization is parameterized by δ in such a way
that the non-dimerized case is recovered at δ = 0, as detailed in the
following. A schematic representation of a dimerized annulene with
n = 10 is reported in Fig. 1.

The orbitals are given by

ψk(x, y) =
1
√

n

n−1

∑
μ=0

e
2πikμ

n [c1 χ(P1 μ) + c2 χ(P2 μ)], (44)
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FIG. 1. Geometry of dimerized annulene for n = 10. The full lines and dashed
lines connecting the C atoms indicate the two resonance integrals, β1 and β2,
respectively.

where μ is the cell index and the coordinates of the centers are as
follows:

The coefficients c1 and c2 are obtained by diagonalizing the
Hamiltonian matrix Hk defined in Eq. (11) and reported in Table I,
where β1 = −t(1 + δ),β2 = −t(1 − δ) and t > 0 is the hopping inte-
gral of the undimerized annulene. In Table II, we report eigenvalues
ϵ and eigenvector components {c1, c2} of the matrix reported in
Table I for α = 0.

We used the variable 𝜘 = 2πk/n related to K by K = 𝜘/d.
According to Eqs. (7) and (8), the periodic part of the Hückel orbital
is given in cell μ by

uk(s) = c1χ(P1 μ) + e−iπk/nc2χ(P2 μ), (45)

u(s, K) = c1χ(P1 μ) + e−iKd/2c2χ(P2 μ), (46)

TABLE I. Effective Hamiltonian matrix for dimerized annulene.

Hk =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α β1e
−2πik

n + β2

β1e
2πik

n + β2 α

⎤
⎥
⎥
⎥
⎥
⎥
⎦

TABLE II. Eigenvalues and normalized eigenvectors of the matrix Hk of dimerized
annulene.

ϵ −t
√

2[1 + δ2 + (1 − δ2) cos𝜘] t
√

2[1 + δ2 + (1 − δ2) cos𝜘]

c1
ei𝜘(δ−1)−δ−1√
2( ei𝜘(δ+1)−δ+1

−
ei𝜘(δ−1)−δ−1√
2( ei𝜘(δ+1)−δ+1

c2
ei𝜘(δ−1)−δ−1

2
√

1+δ2+(1−δ2) cos 𝜘
ei𝜘(δ−1)−δ−1

2
√

1+δ2+(1−δ2) cos 𝜘

where it should be reminded that c1 and c2 are functions of k or K.
Equations (31) and (35) were both symbolically computed

using MATHEMATICA 12.143 and gave the following identical
results:

Tr(Λ)α + Tr(Λ)β
2n

=
d2
(1 + δ2

)

32∣δ∣
. (47)

This result has also been reported in Ref. 33, where a factor of 16
at the denominator is reported instead of 32; therefore, the TPS per
unit is given there instead of the TPS per electron. Equation (47) is
reported in Fig. 2 for d = 1.

The limit δ → 0 is +∞ as expected for a conductor, while for
δ = ±1, one gets d2

/16, which is the value of a molecule composed
of two sites at the distance d/2. The TPS of such a system with one-
electron sitting on each site is (d/4)2

+ (−d/4)2 to be divided by two
electrons.

As concerns the polarizability, we find that

α∥ =
2(1 + δ2

)E(1 − δ2
) − δ2K(1 − δ2

)

48πδ2
d2

t
, (48)

where K and E are the complete elliptic integrals of the first and
second kind, respectively,

K(x) = ∫
π/2

0
(1 − x sin2 θ)

−1/2
dθ (49)

and

E(x) = ∫
π/2

0
(1 − x sin2 θ)

1/2
dθ. (50)

In Fig. 3, we report α∥ as a function of δ for d = t = 1.

B. Cyclacene
The geometry of cyclacene is assumed to be a strip of n regular

hexagons folded in a cylinder; see Fig. 4. The axis of the cyclacene
ring is z. The length of the elementary cell is d = b

√
3, where b is

the side of the hexagon. The coordinates of the sites are given in

FIG. 2. TPS per electron of dimerized annulene as a function of δ.
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FIG. 3. α∥ per cell of dimerized annulene as a function of δ.

FIG. 4. Geometry of cyclacene for n = 17. The full lines and dashed lines
connecting the C atoms indicate the two different hopping integrals, t and ηt,
respectively.

Table III. The cyclacene molecule is symmetric with respect to the
x, y plane and can be viewed as two annulene rings, one above and
one below this σh plane, connected by bonds parallel to the z axis,
as shown in Fig. 4 by the dashed lines. The effective Hamiltonian
matrix is given in Table IV, where we considered the possibility of a
different strength for the vertical bonds connecting the two annu-
lene rings by introducing a parameter 0 ≤ η ≤ 1. The value η = 1
corresponds to the cyclacene molecule, while for η = 0, one gets two

TABLE III. Coordinates of the sites (μ = 0, . . . , n − 1) for the cyclacene molecule.

x y z

P1μ R cos (μ+1/2)d
R R sin (μ+1/2)d

R b
P2μ R cos μd

R R sin μd
R

b
2

P3μ R cos μd
R R sin μd

R − b
2

P4μ R cos (μ+1/2)d
R R sin (μ+1/2)d

R −b

TABLE IV. Effective Hamiltonian matrix for cyclacene; t > 0 is the hopping integral.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α −t(1+e
2πik

n ) 0 0

−t(1+e
−2πik

n ) α −ηt 0

0 −ηt α −t(1 + e
−2πik

n )

0 0 −t(1 + e
2πik

n ) α

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

TABLE V. Eigenvalues of cyclacene. Υ = 8 + η2 + 8 cos 2πk
n .

ϵ1 ϵ2 ϵ3 ϵ4

σh + − + −

Energies −t η+
√
Υ

2 t η−
√
Υ

2 t
√
Υ−η
2 t

√
Υ+η
2

non-interacting and undimerized annulenes. The eigenvalues are
reported in Table V; the eigenvectors are not reported because they
are exceedingly complicated, but they can be found in Appendix B.

In Eq. (51), we report the localization spread and polarizabil-
ity per cell of cyclacene. The TPS per electron was computed using
Eq. (31) or Eq. (35) and the polarizability per cell using Eq. (36),
obtaining the following:

λ∥(η) =
3

2η
√

16 + η2
b2,

α∥(η) =
1

8π
√

16 + η2
[

32 + η2

η2 E(
16

16 + η2 ) (51)

− K(
16

16 + η2 )]
b2

t
,

FIG. 5. TPS per electron and polarizability of parameterized cyclacene as a
function of η. The units are b2 and b2/t for λ∥ and α∥, respectively.
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where K(x) and E(x) are defined in Eqs. (49) and (50). In Fig. 5, we
report the results given in Eq. (51).

Both λ∥ and α∥ diverge for η→ 0 as expected for a couple
of metallic annulenes. On the other hand, at η = 1, we obtain the
following results for the cyclacene molecule:

λ∥(1) =
3

2
√

17
b2
≈ 0.363 804 b2,

α∥(1) =
33E( 16

17) − K( 16
17)

8π
√

17
b2

t
≈ 0.313 082

b2

t
,

showing its insulating character in the xy plane and recovering the
results found in a previous paper.30

IV. DISCUSSION AND CONCLUSIONS
In this paper, we exploit the isomorphism between the Cn group

and the group of 1D translations with periodic Born–von Kármán
boundary conditions. We consider a finite ring of radius R with open
boundary conditions in the (x, y) plane and a segment of length
L = 2πR on a straight line with periodic boundary conditions. If
we denote by ϕ the rotation angle around the center of the ring in
the counterclockwise direction, the arc length s = Rϕ on the ring is
mapped on the coordinate, say ζ, on the line segment counted from,
e.g., its leftmost point: 0 ≤ ζ < L. This can be viewed as rolling the
ring on the straight line, and in this sense, all the points of the line
can be mapped on the ring, provided that the angle ϕ is allowed to
assume any real value. In the plane, we can use a single complex
coordinate z = x + iy to describe any curve, and in this way, the equa-
tion of the ring is z = R(cosϕ + i sinϕ) = R exp(iϕ) = R exp(is/R).
The point P(z) of the ring is mapped on the point P(ζ) on the line,
and we recover the complex position operator introduced in Ref. 33.
This mapping provides a new insight into the nature of the complex
position operator.

As far as the TPS is concerned, we can easily derive formulas for
the thermodynamic limit for systems treated at the non-correlated
level, i.e., described by a Slater determinant. In particular, a formula
of Sgiarovello et al. is obtained in a different way from the origi-
nal derivation.32 More interesting, a second formula, we called sum
over states, for the TPS, equivalent to the Resta one in the limit of
a complete basis, is also obtained. The latter allows for an interest-
ing extension to the polarizability and to any quantity expressed as
follows:

⟨Φ0μx(H − E0)
K+1
� μxΦ0⟩ = SK . (52)

The quantities SK have been the object of much interest in the old
days of perturbation theory42 and are known as sum rules for oscil-
lator strength. As already pointed out in Ref. 33, our approach using
the complex position one-body operator can be applied to metal-
lic systems, avoiding the awkward “ln 0” singularity. This allows
us to compute λ for finite systems and study their behavior when
approaching the thermodynamic limit. As discussed in Secs. II C 1
and II C 2, the divergence of λ is due to the partial filling of a band:
this shows the equivalence of the two criteria for a non-correlated
system to be a conductor.

Finally, we want to stress the fact that our approach is not con-
fined to the treatment of periodic non-interacting systems, although

this was the subject of the present work. Indeed, once the ordinary
position operator is replaced by the periodic complex position one,
it is possible to proceed exactly as in the case of OBC. It is worth
noting that the use of the periodic complex position operator does
not introduce complications for the numerical evaluation of its mean
value, given that it is the square of a one-electron operator, exactly
as in the case of the ordinary position operator. In all the cases we
have investigated so far, the large-system qualitative behavior of the
real and complex position quantities is identical.

Concerning the treatment of correlated systems, we note that
our approach does not present peculiar problems, given that one has
to evaluate the mean value of the square of a one-electron operator
and the machinery of quantum chemistry can be easily adapted to
perform this task (paying attention to the fact that the operator is in
this case complex). Actually, we have already treated correlated sys-
tems following the approach here reported.33 The difficulty, which is
general for any approach, is mainly a “technical” one since it is very
hard to compute correlated wave functions for systems having more
than a dozen identical units. In a similar way, it will be possible to
treat disordered systems, exactly in the same way done by using the
finite OBC formalism.44

Finally, we note that the extension of the formalism to 2D and
3D systems will be the subject of future work.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed derivation of
Bloch’s theorem for ring systems.

APPENDIX A: MATRIX ELEMENTS IN THE Cn GROUP

In this appendix, we show the vanishing of some matrix ele-
ments for systems enjoying the symmetry of the Cn group. In par-
ticular, we consider the matrix elements of Eq. (37) and use group
theory arguments. Let us first consider the functions defined by the
Cartesian coordinates x, y of a point P follows:

x(P) =
R
2
(e

2πis
L + e

−2πis
L ), (A1)

y(P) = −i
R
2
(e

2πis
L − e

−2πis
L ), (A2)

and by comparison with Eq. (6), we realize that this couple of func-
tions belong to the reducible representation E with k = ±1. There-
fore, expectation values of the dipole operators in the ring wave
functions are vanishing. As concerns the second moments, we have
the following:

x2
(P) =

R2

4
[e

4πis
L + e

−4πis
L + 2], (A3)

y2
(P) = −

R2

4
[e

4πis
L + e

−4πis
L − 2], (A4)

xy(P) = −i
R2

4
[e

4πis
L + e

−4πis
L ]. (A5)

Therefore, xy and x2
− y2 belong to the reducible representation

k = ±2, while x2 and y2 contain the A representation (x2
+ y2 belong

to A).
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TABLE VI. Eigenvalues and normalized eigenvectors of two weakly bonded annulenes forming cyclacene for η = 1.
Υ = 8 + η2 + 8 cos 2πk

n .

Eigenvector 1 Eigenvector 2

Energy −t(η +
√
Υ)/2 t(η −

√
Υ)/2

σh + −

c1
(Υ−η√Υ)

√
Υ+η√Υ

8Υ cos(kπ/n) −
(Υ+η√Υ)

√
Υ−η√Υ

8Υ cos(kπ/n)

c2

√
Υ+η√Υ

√
Υ2−η2Υ(1−i tan(kπ/n))

32Υ cos(kπ/n)

√
−Υ+η√Υ

√
Υ2−η2Υ(1+i tan(kπ/n))

32Υ cos(kπ/n)

c3

√
Υ+η√Υ

√
Υ2−η2Υ(1−i tan(kπ/n))

32Υ cos(kπ/n)
(Υ+η√Υ)

√
Υ−η√Υ

8Υ cos(kπ/n)

c4
(Υ−η√Υ)

√
Υ+η√Υ

8Υ cos(kπ/n)
(Υ+η√Υ)

√
Υ−η√Υ

8Υ cos(kπ/n)

Energy t(
√
Υ − η)/2 t(

√
Υ + η)/2

σh + −

c1
(Υ+η√Υ)

√
Υ−η√Υ

8Υ cos(kπ/n) −
(Υ−η√Υ)

√
Υ+η√Υ

8Υ cos(kπ/n)

c2

√
−Υ+η√Υ

√
Υ2−η2Υ(−1+i tan(kπ/n))

32Υ cos(kπ/n)
−
√
Υ+η√Υ

√
Υ2−η2Υ(1−i tan(kπ/n))

32Υ cos(kπ/n)

c3

√
−Υ+η√Υ

√
Υ2−η2Υ(−1+i tan(kπ/n))

32Υ cos(kπ/n)

√
Υ+η√Υ

√
Υ2−η2Υ(1−i tan(kπ/n))

32Υ cos(kπ/n)

c4
(Υ+η√Υ)

√
Υ−η√Υ

8Υ cos(kπ/n)
(Υ−η√Υ)

√
Υ+η√Υ

8Υ cos(kπ/n)

APPENDIX B: EIGENVALUES AND EIGENVECTORS
FOR CYCLACENE

Here, we report the eigenvalues and eigenvectors of the system
of two annulenes coupled to form a cyclacene molecule when the
parameter η is equal to 1 (Table VI).

APPENDIX C: POSITION OPERATOR FOR PERIODIC
SYSTEMS

We detail here the reasons that led us to the choice of the
imaginary exponential function in order to generalize the position
operator to periodic systems. We limit ourselves to the 1D case.
These arguments had already been very schematically introduced
in Ref. 33. Let us consider the periodic interval (the “supercell”)
[0, L], and let x be the coordinate of a point belonging to the super-
cell: x ∈ [0, L]. Let us call q(x) the periodic position associated with
the point of coordinate x. We impose the three following general
conditions to the periodic position:

1. The function q(x) must be a continuous periodic function of
period L,

q(x + L) = q(x), ∀x. (C1)

In other words, q(x) is translationally invariant in the super-
cell [0, L].

2. The distance between two points, x and x + d, defined as the
modulus of the difference between the corresponding complex
positions, must be a function of d alone, independent of x,

∣q(x + d) − q(x)∣2 = ∣q(d) − q(0)∣2. (C2)

3. For large values of L and d fixed, we must obtain the ordinary
distance between the two points,

lim
L→∞
∣q(d) − q(0)∣2 = d2. (C3)

In the limit of an infinite supercell, one must recover the non-
periodic result.

Condition 1 is manifestly satisfied choosing for q(x) a function
of the type

q(x) =
∞
∑

k=−∞
ak exp(

i2πkx
L
), (C4)

with k being an integer. In order to investigate condition 2, we com-
pute the difference q(x + d) − q(x) by using the previous equation.
We obtain the following:

q(x + d) − q(x) =
∞
∑

k=−∞
ak exp(

i2πkx
L
)[exp(

i2πkd
L
) − 1].

(C5)

We now compute the square of the distance between the points
x + d and x, given by the square modulus of this quantity,
∣q(x + d) − q(x)∣2. We get

∣q(x + d) − q(x)∣2 =
∞
∑

k=−∞

∞
∑

l=−∞
a∗k al [exp(

i2π(l − k)x
L

)]

× [exp(
−i2πkd

L
) − 1] [exp(

i2πld
L
) − 1].

(C6)
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Among the three terms within square brackets, the only one
containing x is the first exponential factor. Therefore, in order
to have a quantity not depending on x, a sufficient condition is
that all terms having l ≠ k in this equation vanish. This happens
if only one term in Eq. (C6) survives. Besides the trivial constant
solution q(x) = a0, which does not lead to any physically acceptable
result, let us consider a term aj different from zero. One can note
that the corresponding a−j term is vanishing. This fact rules out
real solutions of the type q(x) = a sin( 2πjx

L ) or q(x) = a cos( 2πjx
L ).

We note, moreover, that an exponential function is much easier
to manipulate than a trigonometric one. Therefore, condition 2
suggests the choice, for instance (let us assume j = 1),

q(x) = a1 exp(
i2πx

L
) + a0. (C7)

It is worth noting that the presence of the a0 term does not invalidate
the request that the quantity in Eq. (C6) does not depend on x, given
that for k = 0 or l = 0, the second or the third term in square brackets
is vanishing. Finally, a Taylor expansion of condition 3 implies that
a1 =

L
2π . On the other hand, no physical constraints can be used to

fix a value for a0, which is an arbitrary parameter related to the zero
of the periodic position.

The above reasons suggest the definition

q(x) =
L

2π
exp(

i2πx
L
), (C8)

which is the one we use. The equivalent choice

q(x) =
L

2π
exp(

−i2πx
L
) (C9)

is also possible, being simply obtained from the previous one by a
parity operation. The constant term a0 can be chosen equal to− L

2πi in
such a way to remove the constant term appearing in the exponential
expansion.

Different non-equivalent choices are also possible for the inte-
ger k, for instance, by choosing different ak (k = ±2 or k = ±3, . . .)
as the only non-zero term in Eq. (C6). In the limit of large boxes,
all these choices lead to the same results and are therefore equiv-
alent. However, the choices of a1 (or equivalently, a−1) are those
that converge most quickly to the infinite-size limit and are there-
fore preferable. Note that, as far as we have been able to find, no
real solution satisfies all the three conditions, 1–3. The characteris-
tic of a complex nature is also shared by the operator Û introduced
in Resta’s formalism. The periodic position seems to be intrinsically
complex.
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