We prove a comparison principle for positive supersolutions and subsolutions to the Lane–Emden equation for the p-Laplacian, with subhomogeneous power in the right-hand side. The proof uses variational tools and the result applies with no regularity assumptions, both on the set and the functions. We then show that such a comparison principle can be applied to prove: uniqueness of solutions; sharp pointwise estimates for positive solutions in convex sets; localization estimates for maximum points and sharp geometric estimates for generalized principal frequencies in convex sets.
A comparison principle for the Lane–Emden equation and applications to geometric estimates
Brasco L.Co-primo
;Prinari F.
Co-primo
;
2022
Abstract
We prove a comparison principle for positive supersolutions and subsolutions to the Lane–Emden equation for the p-Laplacian, with subhomogeneous power in the right-hand side. The proof uses variational tools and the result applies with no regularity assumptions, both on the set and the functions. We then show that such a comparison principle can be applied to prove: uniqueness of solutions; sharp pointwise estimates for positive solutions in convex sets; localization estimates for maximum points and sharp geometric estimates for generalized principal frequencies in convex sets.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
braprizag_final_rev.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
510.1 kB
Formato
Adobe PDF
|
510.1 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0362546X22000451-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
901.08 kB
Formato
Adobe PDF
|
901.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.