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Abstract. We prove a comparison principle for positive supersolutions and subsolutions to the

Lane-Emden equation for the p−Laplacian, with subhomogeneous power in the right-hand side.

The proof uses variational tools and the result applies with no regularity assumptions, both on
the set and the functions. We then show that such a comparison principle can be applied to

prove: uniqueness of solutions; sharp pointwise estimates for positive solutions in convex sets;
localization estimates for maximum points and sharp geometric estimates for generalized principal

frequencies in convex sets.
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1. Introduction

1.1. The Lane-Emden equation. Let 1 < p <∞, we will indicate by

∆pu = div (|∇u|p−2∇u),
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the p−Laplace operator. Given Ω ⊂ RN an open set, in this paper we deal with weak solutions to
the following quasilinear equation

(1.1) −∆pu = α |u|q−2 u, in Ω,

where α > 0 is a given constant. We will focus on the sub-homogeneous case, i.e. we will always
consider the case

1 < q < p.

The equation (1.1) will be coupled with a Dirichlet boundary condition, not necessarily identically
to zero. As for the set Ω, we will make no regularity assumptions on its boundary and will allow
for a large class of sets, possibly unbounded or even with infinite volume (we refer to Definition 2.1
below for the precise condition).

We recall that the equation (1.1) is connected to the stationary solutions of the following doubly
nonlinear slow diffusion equation

(1.2) ∂t(|u|q−2 u) = ∆pu, in (0,+∞)× Ω.

More precisely, by looking for nontrivial solutions of the type u(t, x) = T (t)X(x), it is straightfor-
ward to see that the spatial part X must solve precisely (1.1), while the temporal part must decay
polynomially to 0, i. e. we have

T (t) ∼ t−
1

p−q , for t→ +∞.

As simple as it is, this formal computation is the first important step in the understanding of the
long-time behaviour of solutions to (1.2), together with the identification of their limit profiles.

For ease of completeness, we recall that this has been made rigourous in [45], at least in the
case of positive solutions and for homogenenous Dirichlet boundary conditions. More precisely, [45,
Theorem 2.1] proves1 that

lim
t→+∞

∥∥∥t 1
p−q u(t, ·)− wΩ,α(·)

∥∥∥
L∞(Ω)

= 0,

provided Ω ⊂ RN is an open bounded set, with sufficiently smooth boundary. Here wΩ,α is the
unique positive solution of (1.1) vanishing at the boundary, with the choice

α =
q − 1

p− q
.

This is the generalization of a classical result by Aronson and Peletier (see [3] and also [48] for a
simpler proof) for the case p = 2 and 1 < q < 2, where the equation (1.2) reduces to the so-called
porous medium equation.

However, it seems that a complete picture about the long-time behaviour of solutions to (1.2)
is still missing, in the case of sign-changing solutions and for more general boundary data. We
just cite the recent paper [17] for the case of sign-changing solutions, in a particular situation. We

1We notice that [45] deals with the (apparently) different equation

∂tv = ∆p(|v|m−1 v),

under the restriction (p− 1)m > 1. However, by taking the nonlinear scaling u = |v|m−1 v we formally end up with

(1.2), where q = 1 + 1/m. Observe that we have

(p− 1)m > 1 ⇐⇒ q = 1 +
1

m
< p,

which is exactly the range we are interested in.
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also refer to [8, Section 1.3] and the references therein, for a discussion on the physical relevance of
equation (1.2).

1.2. Main results. Let us now go back to the equation (1.1). The first result of this paper is
a comparison principle for positive subsolutions and supersolutions of this equation, see Theorem
4.1 below. In proving such a result, we will take a purely variational point of view. Indeed, the
cornerstone of the proof will be the so-called hidden convexity principle for the p−Dirichlet integral,
i. e. the fact that

ψ 7→
∫

Ω

|∇ψ|p dx

is convex, on the cone of non-negative functions, along curves of the form

t 7→
(

(1− t)ψq0 + t ψq1

) 1
q

,

for 1 ≤ q ≤ p. This is the generalization of a remarkable result by Benguria, originally obtained for
p = q = 2 in [5] (see also [6, Lemma 4]) and first generalized to the case p = q 6= 2 by Dı́az and Saá
in [23, Lemme 1]. We refer to Remark 2.10 for more bibliographical details.

This property in particular entails that the energy functional associated to (1.1), i.e.

Fq,α(ψ) =
1

p

∫
Ω

|∇ψ|p dx− α

q

∫
Ω

|ψ|q dx,

is actually convex, in this suitable sense, despite the presence of the concave lower-order perturbation
given by the term with |ψ|q. This simple observation permits to recover the comparison principle
for our equation, by adapting the classical proof of the comparison principle for quasilinear elliptic
equations, which coincide with the Euler-Lagrange equation of a convex Lagrangian (see for example
[27, Chapter 1]).

This point of view provides an elegant proof, which we believe to be interesting in itself. Moreover,
it enables us to work under minimal assumptions, both on the sets and the functions. In particular,
we will make no use of regularity theory for the equation (1.1), apart for the minimum principle (in
measure theoretic sense) for weakly p−superharmonic functions. Thus, the proof is very likely to
be adapted to more general equations, for example under the presence of weights, where solutions
may have a limited degree of regularity. We do not pursue this route in this paper, in order not to
bury the main idea under technical details.

We then apply this comparison principle to obtain a variety of results, notably:

• a uniqueness result for the minimization of the functional Fq,α over functions with given
(non-negative) boundary datum (Theorem 4.3);

• a “hierarchy” result, which asserts that all sign-changing solutions to (1.1) with homoge-
neous Dirichlet boundary conditions are “trapped” between the positive solution wΩ,α and
the negative one −wΩ,α (Corollary 4.7);

• a sharp pointwise double-sided estimate on wΩ,α for convex sets, in terms of geometric
quantities (Theorem 5.2);

• a sharp L∞ estimate on wΩ,α (and thus on all sign-changing solutions, see Corollary 5.3),
as well as a localization result for maximum points of wΩ,α (Corollary 5.5), again for convex
sets;
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• a sharp geometric estimate on the so-called generalized principal frequencies (Theorem 5.7)
of an open bounded convex set, i. e. the quantities defined by

λp,q(Ω) := inf
ψ∈C∞0 (Ω)

{∫
Ω

|∇ψ|p dx :

∫
Ω

|ψ|q dx = 1

}
.

Observe that the infimum above is attained on W 1,p
0 (Ω), under suitable assumptions on the

open set Ω. By optimality, each minimizer u is a solution of (1.1), with α = λp,q(Ω) and
the relevant normalization condition on the Lq norm.

1.3. Some comments. At first, we point out that our comparison principle can be seen as an
extension to the quasilinear case of a result by Kajikiya, contained in [41, Theorem 2.2]. The
proof in [41] is different from ours and based on integral identities, relying on Green’s formula. A
lengthy approximation argument is also needed there, in order to avoid to assume the regularity
of subsolutions and supersolutions (used, on the contrary, in the comparison principle proved in
[44, Theorem 2.2.4]). We also observe that the result in [41] is only for the semilinear case, i.e. for
p = 2, but at the same time it is fairly more general, as it deals with positive solutions to

(1.3) −∆u = g(u), in Ω,

under the assumption that g is sublinear.

Our uniqueness result of Theorem 4.3 for the minimization of Fq,α in turn implies uniqueness of
the positive solution for the equation (1.1). In this way, we retrieve a classical result by Dı́az and
Saá contained in [23], with a more general boundary datum and without regularity assumptions on
the set. On the other hand, we recall that the paper [23] is concerned with equations fairly more
general than (1.1), where the right-hand side is replaced by a general nonlinearity g(u) which is
sub-homogeneous, in a suitable sense.

In any case, we point out that the uniqueness result for the equation does not directly imply the
uniqueness of the minimizer, since as already said the functional Fq,α is not convex in the usual
sense. Incidentally, we observe that our Theorem 4.3 is quite related to [30, Theorem 1.2], which
proves a similar result for Ω bounded, homogeneous Dirichlet boundary conditions and more general
variational integrals with p−growth.

In the subsequent paper [40] Kajikiya applied his comparison principle in order to infer geometric
properties of positive solutions to (1.3). Here as well, our paper parallels and extends these results,
to the quasilinear case. In particular our Theorem 5.2 extends [40, Theorem 2.5] by Kajikiya.
Accordingly, all the consequences drawn in [40], can be inferred here, as well.

We also point out that the double-sided L∞ estimate of Corollary 5.3 generalizes to the full range
1 ≤ q < p a similar result for the maximum of the p−torsion function, obtained in [25, Theorem
1.2]. In [25] the result is obtained by means of a different proof, based on the so-called P−function
method.

As for the localization result, our application of the geometric estimate in this context appears to
be original. But of course, our result should be compared with related results recently obtained by
Magnanini and Poggesi in [35], by means of a different proof, still reminiscent of the P−function
method.

Finally, concerning the estimate for generalized principal frequencies, our result reads as follows

(1.4) λp,q(Ω) |Ω|
p−q
q ≥

(πp,q
2

)p 1

rpΩ
,
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for every Ω ⊂ RN open bounded convex set. Here rΩ is the inradius of Ω and πp,q is the one-
dimensional Sobolev-Poincaré constant, defined by

(1.5) πp,q := inf
u∈C∞0 ((0,1))

{
‖u′‖Lp([0,1]) : ‖u‖Lq([0,1]) = 1

}
.

For finite p and q, we recall that this constant is computed for example in [47, equation (7)] and it
is given by

πp,q =
2

q

(
1 +

q

p′

) 1
q
(

1 +
p′

q

)− 1
p

B

(
1

q
,

1

p′

)
,

where p′ = p/(p− 1) and B is the Euler Beta function.
Inequality (1.4) is the generalization to p 6= 2 of a result recently obtained by the first author and

Mazzoleni in [12, Theorem 1.1]. It contains in a unified way a variety of sharp geometric estimates
on generalized principal frequencies. For example, by taking q = 1 this estimate reduces to

Tp(Ω) ≤
(

2

πp,1

)p
|Ω|p−1 rpΩ,

where Tp(Ω) = 1/λp,1(Ω) is the so-called p−torsional rigidity. This is the extension to the case
p 6= 2 of an old result by Makai [36] in the two-dimensional case. Such an extension has already
been proved in [25, Theorem 1.1], by means of a different proof, with respect to the one devised
here. We refer to [7] and [19] for further geometric estimates on the p−torsional rigidity.

Similarly, by taking the limit as q goes to p in (1.4), we obtain2

λp(Ω) ≥
(πp

2

)p 1

rpΩ
,

where λp and πp are defined as above, by simply taking q = p. This is the generalization to the case
of the p−Laplacian of the Hersch-Protter inequality, originally proved by Hersch in [28, Théorème
8.1] for p = 2 = N and then generalized to every dimension by Protter in [43, Theorem 2] (see also
[21]). The case p 6= 2 has been already obtained in [11, 24, 39].

1.4. Plan of the paper. In Section 2 we present all the definitions and basic results, which will
be used throughout the whole paper. In particular, we prove an enhanced version of the hidden
convexity principle, which permits to identify the equality cases (see Theorem 2.9 below).

We start Section 3 with an existence result for the minimization of Fq,α, among functions with
given boundary datum. This is quite standard, but we state it in great generality and pay particular
attention to the limit case q = 1, where the functional is not Gateaux differentiable.

Then, in Section 4 we prove the comparison principle for positive supersolutions and subsolutions
of the Lane-Emden equation. We apply it to prove uniqueness of minimizers for the functional Fq,α,
when the boundary datum is non-negative and Ω is connected. This in particular permits to define
the function wΩ,α, i.e. the unique positive solution of (1.1) with homogeneous Dirichlet conditions.

All the applications of the comparison principle to geometric estimates are then given in Section
5. Finally, the paper is complemented by three appendices: while the first two contain standard
materials, in Appendix B we study the asymptotic behaviour of the function wΩ,α in the set

ΩL =

(
−L

2
,
L

2

)N−1

× (−1, 1),

2We use here that q 7→ λp,q(Ω) is left-continuous at q = p, if Ω ⊂ RN is an open bounded set. Actually, such a

property is true under fairly more general assumptions, we refer to Proposition 2.3 below.
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as the parameter L goes to +∞. This is needed to infer sharpness in Theorem 5.2.
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2. Preliminaries

2.1. Notation. For x0 ∈ RN and R > 0, we will denote by BR(x0) the N−dimensional open ball
with radius R, centered at x0. When the center coincides with the origin, we will simply write BR.

For a function u ∈ L1
loc(RN ), we will indicate by u+ and u− the two functions

u+ = max{u, 0} and u− = max{−u, 0}.
In this way, we have u = u+ − u−.

For an open set Ω ⊂ RN with non-empty boundary, we denote by dΩ the distance function from
the boundary ∂Ω, defined by

dΩ(x) := inf
y∈∂Ω

|x− y|, for every x ∈ Ω.

The inradius rΩ of Ω will be the radius of a largest ball contained in Ω. More precisely, this quantity
is given by

(2.1) rΩ = sup
{
r > 0 : exists x0 ∈ Ω such that Br(x0) ⊂ Ω

}
.

It is well-known that this coincides with the supremum over Ω of dΩ.

2.2. Sobolev spaces. Let 1 < p <∞ and let Ω ⊂ RN be an open set. We indicate by D1,p
0 (Ω) the

completion of C∞0 (Ω), with respect to the norm

ψ 7→ ‖∇ψ‖Lp(Ω;RN ), for every ψ ∈ C∞0 (Ω).

We will also indicate by W 1,p
0 (Ω) the closure of C∞0 (Ω), in the usual Sobolev space W 1,p(Ω),

endowed with the norm

‖ψ‖W 1,p(Ω) = ‖ψ‖Lp(Ω) + ‖∇ψ‖Lp(Ω;RN ).

Definition 2.1. Let 1 < p < ∞, we say that an open set Ω ⊂ RN is q−admissible for some
1 ≤ q < p, if

λp,q(Ω) := inf
ψ∈C∞0 (Ω)

{∫
Ω

|∇ψ|p dx :

∫
Ω

|ψ|q dx = 1

}
> 0.

This is equivalent to require that the homogeneous Sobolev space D1,p
0 (Ω) is continuously embedded

in Lq(Ω).

Remark 2.2. A necessary and sufficient condition for an open set to be q−admissible is given
in [37, Theorem 15.5.2]. We recall that bounded open sets and, more generally, open sets with
finite volume are q−admissible, for every 1 ≤ q < p. However, the class of q−admissible sets is
larger, since there exist examples of q−admissible sets, which have infinite volume (see [37, Section
15.5.3]).
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Proposition 2.3. Let 1 < p <∞ and let Ω ⊂ RN be an open set, which is q0−admissible for some
1 ≤ q0 < p. Then we have

lim
q↗p

λp,q(Ω) = λp(Ω),

where

λp(Ω) := inf
ψ∈C∞0 (Ω)

{∫
Ω

|∇ψ|p dx :

∫
Ω

|ψ|p dx = 1

}
.

Proof. Let ψ ∈ C∞0 (Ω) \ {0}, by definition of λp,q(Ω) we have for every 1 ≤ q < p

λp,q(Ω) ≤

∫
Ω

|∇ψ|p dx(∫
Ω

|ψ|q dx
) p

q

.

If we now take the limit as q goes to p, we get

lim sup
q↗p

λp,q(Ω) ≤ lim
q↗p

∫
Ω

|∇ψ|p dx(∫
Ω

|ψ|q dx
) p

q

=

∫
Ω

|∇ψ|p dx∫
Ω

|ψ|p dx
.

By arbitrariness of ψ and recalling the definition of λp(Ω), we obtain

lim sup
q↗p

λp,q(Ω) ≤ λp(Ω).

In order to complete the proof, we use that for every q0 < q < p and every ψ ∈ C∞0 (Ω) \ {0} we
have

‖ψ‖Lq(Ω) ≤ ‖ψ‖1−ϑLq0 (Ω) ‖ψ‖
ϑ
Lp(Ω), with ϑ =

p

q

q − q0

p− q0
,

by interpolation in Lebesgue spaces. In particular, by using that Ω is q0−admissible, this entails
that

‖ψ‖Lq(Ω) ≤
(

1

λp,q0(Ω)

) 1−ϑ
p

‖∇ψ‖1−ϑ
Lp(Ω;RN )

‖ψ‖ϑLp(Ω).

We can thus estimate the Rayleigh–type quotient defining λp,q(Ω) as follows∫
Ω

|∇ψ|p dx(∫
Ω

|ψ|q dx
) p

q

≥
(
λp,q0(Ω)

)1−ϑ

(∫
Ω

|∇ψ|p dx
)ϑ

(∫
Ω

|ψ|p dx
)ϑ ≥ (λp,q0(Ω)

)1−ϑ (
λp(Ω)

)ϑ
.

By arbitrariness of ψ, this yields

λp,q(Ω) ≥
(
λp,q0(Ω)

)1−ϑ (
λp(Ω)

)ϑ
.

If we pass to the limit as q goes to p and observe that

lim
q↗p

ϑ = lim
q↗p

p

q

q − q0

p− q0
= 1,

we finally get
lim inf
q↗p

λp,q(Ω) ≥ λp(Ω),
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as desired. �

Let 1 ≤ q < ∞ and 1 < p < ∞, let Ω ⊂ RN be an open set. In the sequel, we will need the
Sobolev space

Xq,p(Ω) :=
{
ψ ∈ Lq(Ω) : ∇ψ ∈ Lp(Ω;RN )

}
,

endowed with the norm
‖ψ‖Xq,p(Ω) := ‖ψ‖Lq(Ω) + ‖∇ψ‖Lp(Ω;RN ).

Observe that in general we have
W 1,p(Ω) 6= Xq,p(Ω),

unless q = p. For 1 ≤ q < p, this can be seen for example by adapting the classical counter-example
by Nikodým (see [37, Example 1, Section 1.1.4]), to infer existence of an open set Ω ⊂ RN and a
function ψ0 ∈ Xq,p(Ω) such that

ψ0 6∈ Lp(Ω).

For q > p, it is sufficient to take any irregular open set Ω ⊂ RN such that W 1,p(Ω) does not imbed
into Lq(Ω) (see for example [27, page 95]).

We also introduce the space Xq,p
0 (Ω), defined as the closure of C∞0 (Ω) in Xq,p(Ω). The following

technical results will be useful.

Lemma 2.4. Let v, U ∈ Xq,p(Ω), then:

(i) if v − U ∈ Xq,p
0 (Ω), we have |v| − |U | ∈ Xq,p

0 (Ω), as well;

(ii) if v ∈ Xq,p
0 (Ω) and U is non-negative, we have (v − U)+ ∈ Xq,p

0 (Ω).

Proof. We prove (i) first. By assumption, there exists a sequence {ψn}n∈N ⊂ C∞0 (Ω) such that

lim
n→∞

‖ψn − (v − U)‖Xq,p(Ω) = 0.

We then define the new sequence {ϕn}n∈N by

ϕn = |ψn + U | − |U |, for every n ∈ N.
Observe that each ϕn ∈ Xq,p(Ω) and it has compact support. Thus, with a minor modification
of the proof of [18, Lemma 9.5], we get {ϕn}n∈N ⊂ Xq,p

0 (Ω). By construction and by the triangle
inequality, we have ∣∣∣ϕn − (|v| − |U |)

∣∣∣ =
∣∣∣|ψn + U | − |v|

∣∣∣ ≤ |ψn − (v − U)|.

Thus we get
lim
n→∞

∥∥ϕn − (|v| − |U |)
∥∥
Lq(Ω)

= 0.

Moreover, it is easily seen that the sequence {∇ϕn}n∈N ⊂ Lp(Ω;RN ) is bounded. Thus it is weakly
converging to some φ ∈ Lp(Ω;RN ), up to a subsequence. By using the strong convergence in Lq(Ω)
and the definition of weak gradient, we can identify φ = ∇|v| −∇|U |. By Mazur’s Lemma (see [32,

Theorem 2.13]), we can build a new sequence {(ϕ̃n, φ̃n)}n∈N ⊂ Lq(Ω)×Lp(Ω;RN ), made of convex
combinations of {(ϕn,∇ϕn)}n∈N, such that

lim
n→∞

(
‖ϕ̃n − (|v| − |U |)‖Lq(Ω) + ‖φ̃n −∇(|v| − |U |)‖Lp(Ω;RN )

)
= 0.

Moreover, by construction we clearly have φ̃n = ∇ϕ̃n. This permits to show that |v| − |U | is the
limit in the Xq,p(Ω) norm of a sequence {ϕ̃n}n∈N ⊂ Xq,p

0 (Ω). Since the latter is a closed subspace,
we get the conclusion.
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In order to prove (ii), it is sufficient to write

(v − U)+ =
|v − U |+ (v − U)

2
=

(|v − U | − U) + v

2
.

Then we observe that v ∈ Xq,p
0 (Ω) by assumption, while

|v − U | − U = |U − v| − |U | ∈ Xq,p
0 (Ω),

from point (i), applied to the function U − v. Indeed, observe that (U − v)− U ∈ Xq,p
0 (Ω). �

Proposition 2.5. Let 1 ≤ q < p <∞ and let Ω ⊂ RN be a q−admissible open set. Then we have

Xq,p
0 (Ω) = W 1,p

0 (Ω) = D1,p
0 (Ω),

and the three spaces are compactly embedded into Lq(Ω). Consequently, we also have

W 1,p
0 (Ω) ∩Xq,p(Ω) = W 1,p

0 (Ω).

Proof. It is sufficient to prove the first fact, the second one being an easy consequence of this.
We need to prove that the three norms

‖∇ψ‖Lp(Ω;RN ), ‖ψ‖W 1,p(Ω) and ‖ψ‖Xq,p(Ω),

are equivalent on C∞0 (Ω). Observe that under the assumption of q−admissibility of the set Ω, we
have

‖ψ‖Xq,p(Ω) ≤
(
λp,q(Ω)−

1
p + 1

)
‖∇ψ‖Lp(Ω;RN ), for every ψ ∈ C∞0 (Ω).

Moreover, we recall the Gagliardo-Nirenberg interpolation inequality

(2.2) ‖ψ‖Lp(Ω) ≤ C ‖ψ‖1−ϑLq(Ω) ‖∇ψ‖
ϑ
Lp(Ω;RN ), for every ψ ∈ C∞0 (Ω),

where the exponent ϑ = ϑ(N, p, q) ∈ (0, 1) is dictated by scale invariance, i.e.

ϑ =

N

q
− N

p
N

q
− N

p
+ 1

,

and C = C(N, p, q) > 0. By using also Young’s inequality with conjugate exponents 1/ϑ and
1/(1− ϑ), we get from (2.2)

‖ψ‖W 1,p(Ω) = ‖ψ‖Lp(Ω) + ‖∇ψ‖Lp(Ω;RN )

≤ C ′
(
‖ψ‖Lq(Ω) + ‖∇ψ‖Lp(Ω;RN )

)
+ ‖∇ψ‖Lp(Ω;RN )

≤ (C ′ + 1) ‖ψ‖Xq,p(Ω), for every ψ ∈ C∞0 (Ω).

The previous estimates show the desired equivalence of the norms on C∞0 (Ω). As for the compact-

ness of the embedding, it is sufficient to recall that for 1 ≤ q < p the embedding of D1,p
0 (Ω) into

Lq(Ω) is continuous if and only if it is compact (see [37, Theorem 15.6.2] or also [16, Theorem 1.2]).
This fact and the equivalence of the spaces conclude the proof. �
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2.3. Weak solutions. We recall the following definition

Definition 2.6. Let 1 < p <∞ and let Ω ⊂ RN be an open set. We say that u ∈ L1
loc(Ω) is weakly

p−superharmonic in Ω if ∇u ∈ Lp(Ω;RN ) and

(2.3)

∫
Ω

〈|∇u|p−2∇u,∇ψ〉 dx ≥ 0, for every ψ ∈ C∞0 (Ω), ψ ≥ 0.

Definition 2.7. Let α > 0 and 1 < q < p < ∞. Let Ω ⊂ RN be an open set. We say that a
function v ∈ Xq,p(Ω) is a:

• weak supersolution of (1.1) if∫
Ω

〈|∇v|p−2∇v,∇ψ〉 dx ≥ α
∫

Ω

|v|q−2 v ψ dx, for every ψ ∈ C∞0 (Ω), ψ ≥ 0;

• weak subsolution of (1.1) if∫
Ω

〈|∇v|p−2∇v,∇ψ〉 dx ≤ α
∫

Ω

|v|q−2 v ψ dx, for every ψ ∈ C∞0 (Ω), ψ ≥ 0;

• weak solution of (1.1) if∫
Ω

〈|∇v|p−2∇v,∇ψ〉 dx = α

∫
Ω

|v|q−2 v ψ dx, for every ψ ∈ C∞0 (Ω).

We can obviously admit test functions in Xq,p
0 (Ω) in the above inequalities, by a standard density

argument.
In the case q = 1, for a non-negative function v we extend the previous definitions, by using the

convention

|v|q−2 v = vq−1 = 1.

Remark 2.8 (Scalings). It is easily seen that if u ∈ Xq,p(Ω) is a weak solution of

−∆pu = α |u|q−2 u, in Ω,

and t > 0, then the rescaled function

ut(x) = t
p

p−q u

(
x− x0

t

)
,

is a weak solution of the same equation, in the new set x0 + tΩ. On the other hand, if β > 0 and
we set

v =

(
β

α

) 1
p−q

u,

then this is a weak solution of

−∆pv = β |v|q−2 v, in Ω.

The same remarks apply to subsolutions and supersolutions.
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2.4. Hidden convexity. We will need the following hidden convexity property of the p−Dirichlet
integral. This is nowadays well-known among experts, we give here a general statement under
minimal assumptions both on the open set and the functions. We also identify the equality cases,
by means of an enhanced version of the inequality, see equation (2.10) below.

Theorem 2.9 (Hidden convexity). Let 1 ≤ q < ∞, 1 < p < ∞ and 1 ≤ r ≤ min{p, q}. Let
Ω ⊂ RN be an open set, for every pair of non-negative functions v, w ∈ Xq,p(Ω), we set

(2.4) σt := ((1− t) vr + t wr)
1
r , for every t ∈ [0, 1].

Then σt ∈ Xq,p(Ω) and

(2.5)

∫
Ω

|∇σt|p dx ≤ (1− t)
∫

Ω

|∇v|p dx+ t

∫
Ω

|∇w|p dx for every t ∈ [0, 1].

Moreover, when Ω is connected:

• if 1 = r < p , the equality for some t ∈ (0, 1) holds in (2.5) if and only if v = w + C, with

C ∈ R;

• if 1 < r < p , the equality for some t ∈ (0, 1) holds in (2.5) if and only if

either v = w or w and v are both constant;

• if 1 < r = p and in addition we have

(2.6)
1

v
∈ L∞loc(Ω) and

1

w
∈ L∞loc(Ω),

the equality for some t ∈ (0, 1) holds in (2.5) if and only if v = C w, with C > 0.

Proof. For r = 1 there is nothing to prove, in this case σt is just the usual convex combination of v
and w. Then (2.5) is just the usual convexity of the p−Dirichlet integral. As for the equality cases,
from the strict convexity of the map z 7→ |z|p, we get that if (2.5) holds as an identity for some
t ∈ (0, 1), then we must have

∇v = ∇w a. e. in Ω.

If Ω is connected, this implies that v − w must be constant in Ω.

We now focus on the case 1 < r ≤ min{p, q}. We will first show that σt belongs to Xq,p(Ω) and
satisfies (2.5). Then we will focus on the equality cases in the latter, under the claimed assumptions.

Part 1: properties of σt. It is easy to prove that σt ∈ Lq(Ω). Indeed, observe that∫
Ω

|σt|q dx =

∫
Ω

((1− t) vr + t wr)
q
r dx ≤ (1− t)

∫
Ω

vq dx+ t

∫
Ω

wq dx < +∞,

thanks to the convexity of the map τ 7→ τ q/r. For ε > 0 and t ∈ (0, 1), we consider the C1 function
Gε,t defined on [0,+∞)× [0,+∞) by

Gε,t(s1, s2) := ((1− t) (s1 + ε)r + t (s2 + ε)r)
1
r − ε.

Then, we take the vector field

Φ(x) = (v(x), w(x)) ∈ Xq,p(Ω;R2).
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Since

∇Gε,t(s1, s2) =

(
(1− t) (s1 + ε)r−1

((1− t) (s1 + ε)r + t (s2 + ε)r)
r−1
r

,
t (s2 + ε)r−1

((1− t) (s1 + ε)r + t (s2 + ε)r)
r−1
r

)
,

it is easily seen that Gε,t has a bounded gradient. Thanks to the Chain Rule in Sobolev spaces (see
for example [32, Theorem 6.16]), we have that

σtε = Gε,t ◦ Φ ∈ Xq,p(Ω).

Observe that we also used that Gε,t(0, 0) = 0, to guarantee that σtε has the required summability,
when Ω has infinite volume.

We remark that for every s1, s2 ≥ 0 and t ∈ (0, 1), the quantity ε 7→ Gε,t(s1, s2) is monotone
decreasing. Indeed, observe that

d

dε
Gε,t(s1, s2) =

(1− t) (s1 + ε)r−1 + t (s2 + ε)r−1

((1− t) (s1 + ε)r + t (s2 + ε)r)
r−1
r

− 1 ≤ 0,

thanks to the concavity of the map τ 7→ τ (r−1)/r. Thus in particular we have

σtε2 ≤ σ
t
ε1 ≤ σ

t, for 0 < ε1 < ε2.

By using the Monotone Convergence Theorem and the fact that σt ∈ Lq(Ω), we thus obtain

lim
ε→0

∫
Ω

|σtε − σt|q dx = lim
ε→0

∫
Ω

(σt − σtε)q dx = 0.

We now compute the gradient of σtε

∇σtε =
(1− t) (v + ε)r−1

((1− t) (v + ε)r + t (w + ε)r)
r−1
r

∇v +
t (w + ε)r−1

((1− t) (v + ε)r + t (w + ε)r)
r−1
r

∇w

= (Gε,t(v, w) + ε)

(
(1− t) (v + ε)r

(Gε,t(v, w) + ε)
r
∇v
v + ε

+
t (w + ε)r

(Gε,t(v, w) + ε)
r
∇w
w + ε

)
.

(2.7)

We now observe that

(1− t) (v + ε)r

(Gε,t(v, w) + ε)
r and

t (w + ε)r

(Gε,t(v, w) + ε)
r ,

are both non-negative, less than or equal to 1 and their sum gives 1, thanks to the definition of Gε,t.
Thus they can be regarded as the coefficients of a convex combination. By using the convexity of
the map z 7→ |z|r, we thus obtain

|∇σtε|r ≤ (Gε,t(v, w) + ε)r
(

(1− t) (v + ε)r

(Gε,t(v, w) + ε)
r

∣∣∣∣ ∇vv + ε

∣∣∣∣r +
t (w + ε)r

(Gε,t(v, w) + ε)
r

∣∣∣∣ ∇ww + ε

∣∣∣∣r) .
After some simplifications the previous estimate can be rewritten as

(2.8) |∇σtε|r ≤ (1− t) |∇v|r + t |∇w|r.
We now raise to the power p/r, integrate over Ω and use the convexity of the map τ 7→ τp/r. We
finally obtain

(2.9)

∫
Ω

|∇σtε|p dx ≤ (1− t)
∫

Ω

|∇v|p dx+ t

∫
Ω

|∇w|p dx.

This shows that {∇σtε}ε>0 is a bounded subset of Lp(Ω;RN ), for every t ∈ (0, 1). Thus, there
exists an infinitesimal sequence {εn}n∈N ⊂ (0, 1) such that ∇σtεn weakly converges to a vector
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field φt ∈ Lp(Ω;RN ). By using the definition of weak gradient and the strong convergence in Lq

previously inferred, it is standard to show that we must have φt = ∇σt. This proves that

σt ∈ Xq,p(Ω),

as claimed. Moreover, by taking the limit in (2.9) and using the lower semicontinuity of the Lp

norm with respect to the weak convergence, we finally establish (2.5), at once.

Part 2: enhanced hidden convexity. We go back for a moment to (2.7). Then, rather than
simply using the convexity of z 7→ |z|r, we use a “quantified” version of such a property. This is
expressed by the inequalities of Lemma A.1 and Lemma A.3. Thus we now obtain:

• if r ≥ 2, in place of (2.8) we get

|∇σtε|r + C
t (1− t) (w + ε)r (v + ε)r

(Gε,t(v, w) + ε)
r

∣∣∣∣ ∇vv + ε
− ∇w
w + ε

∣∣∣∣r ≤ (1− t) |∇v|r + t |∇w|r,

which can be further simplified into

|∇σtε|r + C t (1− t) |(w + ε)∇v − (v + ε)∇w|r

(Gε,t(v, w) + ε)
r ≤ (1− t) |∇v|r + t |∇w|r;

• if 1 < r < 2, in place of (2.8) we get

|∇σtε|r + C
t (1− t) (w + ε)r (v + ε)r

(Gε,t(v, w) + ε)
r

(∣∣∣∣ ∇vv + ε

∣∣∣∣2 +

∣∣∣∣ ∇ww + ε

∣∣∣∣2
) r−2

2 ∣∣∣∣ ∇vv + ε
− ∇w
w + ε

∣∣∣∣2
≤ (1− t) |∇v|r + t |∇w|r,

which can be further simplified into

|∇σtε|r + C t (1− t)

(
|(w + ε)∇v|2 + |(v + ε)∇w|2

) r−2
2

(Gε,t(v, w) + ε)
r |(w + ε)∇v − (v + ε)∇w|2

≤ (1− t) |∇v|r + t |∇w|r.

By recalling the definition of Gε,t, it is not difficult to see that for almost every x ∈ Ω, we have3

• if r ≥ 2

lim
ε→0+

|(w + ε)∇v − (v + ε)∇w|r

(Gε,t(v, w) + ε)
r = Rr(v, w) :=


|w∇v − v∇w|r

(1− t) vr + t wr
, if w(x) + v(x) > 0,

0, if w(x) = v(x) = 0;

3We use that for a function v ∈W 1,1
loc (Ω) we have

∇v = 0, a. e. in {x ∈ Ω : v(x) = 0},

see for example [32, Theorem 6.19].
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• while for 1 < r < 2

lim
ε→0+

(
|(w + ε)∇v|2 + |(v + ε)∇w|2

) r−2
2 |(w + ε)∇v − (v + ε)∇w|2

(Gε,t(v, w) + ε)
r

= Rr(v, w) :=


(
|w∇v|2 + |v∇w|2

) r−2
2 |w∇v − v∇w|2

(1− t) vr + t wr
, if w(x) + v(x) > 0,

0, if w(x) = v(x) = 0.

As before, we now raise to the power p/r the pointwise estimates above, integrate over Ω and use
the convexity and super-additivity of the map τ 7→ τp/r. A further limit as ε goes to 0, in conjuction
with Fatou’s Lemma, finally gives∫

Ω

|∇σt|p dx+ C (t (1− t))
p
r

∫
Ω

(Rr(v, w))
p
r dx

≤
∫

Ω

(
(1− t) |∇v|r + t |∇w|r

) p
r

dx

≤ (1− t)
∫

Ω

|∇v|p dx+ t

∫
Ω

|∇w|p dx.

(2.10)

Part 3: equality cases for r < p. We now suppose that Ω is connected. If equality holds in (2.5)
for some t ∈ (0, 1), in particular we must have equality in (2.10), as well. Thus we have that∫

Ω

(
(1− t) |∇v|r + t |∇w|r

) p
r

dx = (1− t)
∫

Ω

|∇v|p dx+ t

∫
Ω

|∇w|p dx,

and ∫
Ω

(Rr(v, w))
p
r dx = 0.

The first fact implies that

(2.11) |∇v| = |∇w|, a. e. in Ω,

thanks to the strict convexity of τ 7→ τp/r. The second fact implies that

(2.12) w∇v = v∇w, a. e. in Ω,

thanks to the definition of Rr(v, w). We claim that (2.11) and (2.12) imply that ∇w = ∇v almost
everywhere in Ω. Indeed, let us call

E =
{
x ∈ Ω : ∇w(x) 6= ∇v(x)

}
,

and let us suppose that |E| > 0. By recalling that w and v are non-negative, from (2.12) we get in
particular

w |∇v| = v |∇w|, a. e. in E.

By recalling (2.11) and the definition of E, the last identity in turn implies that

w = v, a. e. in E.

On the other hand, we know that (see again [32, Theorem 6.19])

∇w = ∇v, a. e. in
{
x ∈ Ω : w(x) = v(x)

}
.
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The last properties in particular give that

∇w = ∇v, a. e. in E.

By recalling the definition of E, this is a contradiction. This gives that

∇(w − v) = 0, a. e. in Ω,

and thus w−v = C in Ω for some constant C, since Ω is connected. We can spend this information
in (2.12), so to get

(v + C)∇v = v∇v, a. e. in Ω,

that is C∇v vanishes almost everywhere in Ω. This implies that either C = 0 (and thus w = v) or
v is constant in Ω (and the same is true for w).

Part 4: equality cases for r = p. We suppose again that Ω is connected and assume the stronger
condition (2.6) on v and w. If equality holds in (2.5), from (2.10) we get in particular that∫

Ω

Rp(v, w) dx = 0.

This gives again (2.12), as above. The assumption on v and w entails that for every open set Ω′

compactly contained in Ω, there exists cΩ′ > 0 such that v, w ≥ cΩ′ almost everywhere in Ω′. This
permits to infer that

log v ∈W 1,1
loc (Ω) and logw ∈W 1,1

loc (Ω),

and the Chain Rule formula holds for their distributional gradients. We then obtain

∇(log v − logw) =
∇v
v
− ∇w

w
= 0, a. e. in Ω,

thanks to (2.12). Since Ω is an open connected set, the difference log v − logw must be constant
almost everywhere in Ω. This in turn permits to conclude that v = C w almost everywhere in Ω,
for some C > 0. The proof is now concluded. �

Remark 2.10. As already said in the Introduction, the previous property of the p−Dirichlet
integral has been discovered by Benguria, in the case p = r = 2 (see [5, 6]) and then generalized to
p = r 6= 2 by Dı́az and Saá in [23]. Since then, it has been extended by various authors, to cover
the case of a general 1 < p <∞ and an exponent 1 < r ≤ p. We refer for example to [4, 29, 30, 38],
as well as to [9, 13, 22, 46], where the same property for more general Dirichlet–type integrals is
proved. The main novelty with respect to the above references is that we use a qualified form of
convexity for the power z 7→ |z|r, which gives as a bonus the enhanced inequality (2.10). This in
turn implies that we can identify the equality cases. Finally, we recall the reference [14], where the
connections of the hidden convexity property with the so-called Picone inequality are explained.

Actually, if the curve t 7→ σt of the previous result is built from two Sobolev functions sharing
the same boundary datum, the same remains true for the curve itself. This is the content of the
next result.

Proposition 2.11. Let 1 ≤ q < ∞, 1 < p < ∞ and 1 ≤ r ≤ min{p, q}. Let Ω ⊂ RN be an
open set, for every pair of non-negative functions v, w ∈ Xq,p(Ω), we still denote by σt the curve of
functions defined by (2.4). If there exists a non-negative U ∈ Xq,p(Ω) such that

v − U ∈ Xq,p
0 (Ω) and w − U ∈ Xq,p

0 (Ω),

then
σt − U ∈ Xq,p

0 (Ω).
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Proof. By assumption, there exist two sequences {ψn}n∈N, {ϕn}n∈N ⊂ C∞0 (Ω) such that

lim
n→∞

‖ψn − (v − U)‖Xq,p(Ω) = 0,

and

lim
n→∞

‖ϕn − (w − U)‖Xq,p(Ω) = 0.

Then we set

vn := ψn + U ∈ Xq,p(Ω) and wn := ϕn + U ∈ Xq,p(Ω),

and observe that the first one converges to v, while the second one to w. Without loss of generality,
we can suppose that vn and wn are both non-negative. For every t ∈ [0, 1], thanks to Theorem 2.9,
we know that

σtn := ((1− t) vrn + t wrn)
1
r ∈ Xq,p(Ω).

Moreover, since by construction σtn−U has compact support in Ω, we have that σtn−U ∈ X
q,p
0 (Ω)

(it is sufficient to adapt the proof of [18, Lemma 9.5] to our Sobolev space). In order to conclude
the proof, it is sufficient to show that

(2.13) lim
n→∞

‖σtn − σt‖Lq(Ω) = 0, for every t ∈ (0, 1),

and

(2.14) sup
n∈N
‖∇σtn‖Lp(Ω;RN ) < +∞, for every t ∈ (0, 1).

Indeed, thanks to the reflexivity of Lp(Ω;RN ), from (2.14) we would get that ∇σtn − ∇U weakly
converges to some φt ∈ Lp(Ω;RN ), up to a subsequence. Then (2.13) and the definition of weak
gradient would permit to show that φt = ∇σt − ∇U . Thus σt − U would coincide with the weak
limit of a sequence in Xq,p

0 (Ω). As in the proof of Lemma 2.4, we can appeal to Mazur’s Lemma
to show that σt − U is also a strong limit of a sequence in Xq,p

0 (Ω). We finally conclude that
σt − U ∈ Xq,p

0 (Ω), as claimed.
The strong convergence in Lq can be obtained by observing that4

σt =
∥∥∥((1− t)1/r v, t1/r w

)∥∥∥
`r

and σtn =
∥∥∥((1− t)1/r vn, t

1/r wn

)∥∥∥
`r
.

Then, by using the triangle inequality for the `r norm∣∣∣‖z‖`r − ‖ξ‖`r ∣∣∣ ≤ ‖z − ξ‖`r for z, ξ ∈ R2,

it follows

|σtn − σt| ≤ ((1− t) |vn − v|r + t |wn − w|r)
1
r .

By raising to the power q, integrating over Ω and using the convexity of the map τ 7→ τ q/r, we get∫
Ω

|σtn − σt|q dx ≤ (1− t)
∫

Ω

|vn − v|q dx+ t

∫
Ω

|wn − w|q dx.

By recalling that {vn}n∈N and {wn}n∈N strongly converge in Lq(Ω) to v and w, respectively, we
get (2.13).

4We denote by ‖z‖`r the norm

‖z‖`r = (|z1|r + |z2|r)
1
r , for every z = (z1, z2) ∈ R2.
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As for the estimate (2.14), by applying the hidden convexity inequality (2.5), we have∫
Ω

|∇σtn|p dx ≤ (1− t)
∫

Ω

|∇vn|p dx+ t

∫
Ω

|∇wn|p dx,

and the right-hand side is bounded, uniformly with respect to n. The proof is over. �

3. Some properties of the energy functional

We recall the notion of superminimum and subminimum for the energy functional

Fq,α(ψ) :=
1

p

∫
Ω

|∇ψ|p dx− α

q

∫
Ω

|ψ|q dx, for every ψ ∈ Xq,p(Ω),

which is naturally attached to our Lane-Emden equation (1.1).

Definition 3.1. Let α > 0, 1 < p < ∞ and 1 ≤ q < p. For every v ∈ Xq,p(Ω), we introduce the
classes

A+(v) =
{
ψ ∈ Xq,p(Ω) : ψ ≥ v on Ω, ψ − v ∈ Xq,p

0 (Ω)
}
,

and

A−(v) =
{
ψ ∈ Xq,p(Ω) : ψ ≤ v on Ω, ψ − v ∈ Xq,p

0 (Ω)
}
.

Then we say that v is a:

• superminimum for Fq,α if

Fq,α(ψ) ≥ Fq,α(v), for every ψ ∈ A+(v);

• subminimum for Fq,α if

Fq,α(ψ) ≥ Fq,α(v), for every ψ ∈ A−(v);

• minimum for Fq,α if

Fq,α(ψ) ≥ Fq,α(v), for every ψ ∈ Xq,p(Ω) such that ψ − v ∈ Xq,p
0 (Ω).

Remark 3.2. It is a routine fact to show that a function v is a minimum for Fq,α if and only if it
is both a superminimum and a subminimum.

We start with the following existence result, which holds under minimal assumptions.

Theorem 3.3 (Existence). Let α > 0 and 1 ≤ q < p < ∞. Let Ω ⊂ RN be an open set which is
q−admissible. Then for every U ∈ Xq,p(Ω) the following problem

inf
ψ∈Xq,p(Ω)

{
Fq,α(ψ) : ψ − U ∈W 1,p

0 (Ω)
}
,

admits a solution. Moreover, we have:

• for 1 < q < p, each minimizer is a solution of the Lane-Emden equation (1.1);

• for q = 1, each minimizer u satisfies

−α ≤ −∆pu ≤ α, in Ω,

in weak sense;

• for q = 1, each non-negative minimizer u (provided it exists) satisfies

−∆pu = α, in Ω,

in weak sense.
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Proof. We first observe that the class of admissible functions is not empty, since the function U
itself is admissible. We will use the Direct Method in the Calculus of Variations. At this aim, let
us first prove that the infimum above is finite. For every admissible ψ, we have∫

Ω

|ψ|q dx ≤ 2q−1

∫
Ω

|ψ − U |q dx+ 2q−1

∫
Ω

|U |q dx

≤ 2q−1

(λp,q(Ω))
q
p

‖∇ψ −∇U‖q
Lp(Ω;RN )

+ 2q−1

∫
Ω

|U |q dx,
(3.1)

where we used the assumptions that ψ−U ∈W 1,p
0 (Ω) and that Ω is q−admissible. We now observe

that

‖∇ψ −∇U‖q
Lp(Ω;RN )

≤ 2q−1 ‖∇ψ‖q
Lp(Ω;RN )

+ 2q−1 ‖∇U‖q
Lp(Ω;RN )

.

By inserting this in (3.1), we finally get

(3.2)

∫
Ω

|ψ|q dx ≤ C1 ‖∇ψ‖qLp(Ω;RN )
+ C2 ‖U‖qXq,p(Ω),

for some C1 = C1(N, p, q,Ω) > 0 and C2 = C2(N, p, q,Ω) > 0. This yields

Fq,α(ψ) =
1

p

∫
Ω

|∇ψ|p dx− α

q

∫
Ω

|ψ|q dx

≥ 1

p

∫
Ω

|∇ψ|p dx− C1
α

q

(∫
Ω

|∇ψ|p dx
) q

p

− C2
α

q
‖U‖qXq,p(Ω).

By a suitable application of the generalized Young’s inequality

a b ≤ δ q
p
a

p
q + δ−

q
p−q

p− q
p

b
p

p−q , for a, b ≥ 0 and δ > 0,

we then obtain

Fq,α(ψ) ≥ 1

p
(1− δ)

∫
Ω

|∇ψ|p dx− δ−
q

p−q
p− q
p q

(C1 α)
p

p−q − C2
α

q
‖U‖qXq,p(Ω).

If we now choose δ = 1/2, we finally end up with

(3.3) Fq,α(ψ) ≥ 1

2 p

∫
Ω

|∇ψ|p dx−M,

where M = M(N, p, q, α,Ω, U) > 0. This in particular shows that the infimum of Fq,α over the
claimed set is finite.

Let us call m this infimum and consider a sequence {ψn}n∈N of admissible functions, such that

Fq,α(ψn) ≤ m+
1

n+ 1
, for every n ∈ N.

By using the estimates (3.2) and (3.3), we can then infer that

sup
n∈N
‖ψn‖Xq,p(Ω) < +∞.

Thus, we get that ψn weakly converges in Lq(Ω) to ψ and ∇ψn weakly converges in Lp(Ω;RN ) to
a vector filed φ, up to a subsequence. It is easily seen, by the definition of weak gradient, that it
must result φ = ∇ψ. This shows that ψ ∈ Xq,p(Ω).

We still need to show that ψ−U ∈W 1,p
0 (Ω). In order to prove this, we observe that the sequence

{ψn − U}n∈N ⊂ W 1,p
0 (Ω) is bounded in the norm Xq,p(Ω). However, thanks to Proposition 2.5,
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we know that W 1,p
0 (Ω) = Xq,p

0 (Ω). This in turn permits to show that {ψn − U}n∈N is bounded in

W 1,p
0 (Ω). Thus ψn − U weakly converges in W 1,p

0 (Ω), up to a subsequence. By uniqueness, such a

limit must coincide with ψ−U and belongs to W 1,p
0 (Ω), since the latter is weakly closed. Moreover,

by using again that Ω is q−admissible, we can infer

lim
n→∞

‖ψn − U‖Lq(Ω) = ‖ψ − U‖Lq(Ω),

up to a subsequence, thanks to Proposition 2.5. Thus {ψn}n∈N is actually strongly converging in
Lq(Ω). This fact and the weak lower semicontinuity of the p−Dirichlet integral show that

Fq,α(ψ) ≤ lim inf
n→∞

Fq,α(ψn).

By construction of the sequence {ψn}n∈N, the function ψ is the desired minimizer.

The last part of the statement is now standard for 1 < q < p, it is sufficient to observe that the
functional is Gateaux differentiable and compute its first variation.

In the limit case q = 1 we must be more careful. Let us take u a minimizer. For every t > 0 and
ψ ∈ C∞0 (Ω) non-negative, we have

F1,α(u+ t ψ) ≥ F1,α(u).

By using the definition of F1,α and the triangle inequality for the absolute valute, this implies

1

p

∫
Ω

|∇u+ t∇ψ|p − |∇u|p

t
dx+ α

∫
Ω

ψ dx ≥ 0,

where we further divided by t > 0. By taking the limit as t goes to 0, we get∫
Ω

〈|∇u|p−2∇u,∇ψ〉 dx ≥ −α
∫

Ω

ψ dx, for every ψ ∈ C∞0 (Ω), ψ ≥ 0.

This exactly means that −∆pu ≥ −α, in weak sense. The other differential inequality is obtained
in the same way, by taking this time t < 0. This is left to the reader.

Finally, still in the case q = 1, let us suppose that u is a non-negative minimizer. Then, if we
define the convex functional

F̃1,α(ψ) :=
1

p

∫
Ω

|∇ψ|p dx− α
∫

Ω

ψ dx,

we get that u minimizes this functional, as well. It is sufficient to observe that

F̃1,α(ψ) ≥ F1,α(ψ) ≥ F1,α(u) = F̃1,α(u).

for every admissible ψ. This new functional is Gateaux differentiable (because the lower order term
is now linear) and its critical points exactly satisfy the weak formulation of the equation −∆pu = α.
This concludes the proof. �

Remark 3.4. Recall that, thanks to Proposition 2.5, in the previous result one could equivalently
write the condition ψ − U ∈W 1,p

0 (Ω) as

ψ − U ∈ Xq,p
0 (Ω).

Moreover, in the particular case U ∈W 1,p
0 (Ω), under the previous assumptions we get

inf
ψ∈Xq,p(Ω)

{
Fq,α(ψ) : ψ − U ∈W 1,p

0 (Ω)
}

= inf
ψ∈W 1,p

0 (Ω)
Fq,α(ψ),

still thanks to Proposition 2.5.
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The hidden convex structure of the functional Fq,α permits to establish an equivalence between
supersolutions/subsolutions of (1.1) and superminima/subminima of the functional Fq,α. More
precisely, we have the following

Proposition 3.5. Let α > 0 and 1 ≤ q < p <∞. Let Ω ⊂ RN be an open set and let v ∈ Xq,p(Ω)
be a positive function. The following facts hold:

(1) v is a weak supersolution of (1.1) if and only if it is a superminimum for Fq,α;

(2) v is a weak subsolution of (1.1) if and only if it is a subminimum for Fq,α.

Proof. We focus on proving the first statement. The proof of the second one runs similarly and it is
thus left to the reader. Moreover, the fact that a superminimum is a weak supersolution, it follows
in a standard way, by computing the first variation of the functional. We can thus reduce to prove
the converse implication.

We suppose that v is a positive supersolution of (1.1). Let ψ ∈ A+(v), our aim is to show that

(3.4) Fq,α(ψ) ≥ Fq,α(v).

We first observe that if we set

ṽ = α−
1

p−q v,

then by Remark 2.8 this is a supersolution of the Lane-Emden equation with α = 1. Moreover, we
have

Fq,1(ṽ) = α−
p

p−q Fq,α(v).

Analogously, if ψ ∈ A+(v) and we set

ψ̃ = α−
1

p−q ψ,

then ψ̃ ∈ A+(ṽ) and

Fq,1(ψ̃) = α−
p

p−q Fq,α(ψ).

Thus, in order to prove (3.4), we can reduce to prove that

(3.5) Fq,1(ψ̃) ≥ Fq,1(ṽ).

We now build the curve σt = ((1− t) ṽq + t ψ̃q)1/q and observe that

σt − ṽ
t
∈ Xq,p

0 (Ω),

thanks to Proposition 2.11. Furthermore, by monotonicity, we observe that

(σt)q = (1− t) ṽq + t ψ̃q = ṽq + t (ψ̃q − ṽq) ≥ ṽq,

since ψ̃ ≥ ṽ. This shows that

σt ∈ A+(ṽ).

From (2.5), we get∫
Ω

|∇σt|p dx ≤ (1− t)
∫

Ω

|∇ṽ|p dx+ t

∫
Ω

|∇ψ̃|p dx, for every t ∈ [0, 1],

and also, by construction, we have∫
Ω

(σt)q dx = (1− t)
∫

Ω

ṽq + t

∫
Ω

ψ̃q dx, for every t ∈ [0, 1].
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Thus in particular we obtain

(3.6)
Fq,1(σt)− Fq,1(ṽ)

t
≤ Fq,1(ψ̃)− Fq,1(ṽ), for every t ∈ (0, 1].

We focus on the term on the left-hand side. We use the “above tangent” inequality

1

p
|z|p ≥ 1

p
|z0|p + 〈|z0|p−2z0, z − z0〉, for every z0, z ∈ RN ,

with the choices z = ∇σt and z0 = ∇ṽ. Thus we get

Fq,1(σt)− Fq,1(ṽ)

t
=

1

p

∫
Ω

|∇σt|p − |∇ṽ|p

t
dx− 1

q

∫
Ω

(σt)q − ṽq

t
dx

≥
∫

Ω

〈
|∇ṽ|p−2∇ṽ, ∇σ

t −∇ṽ
t

〉
dx− 1

q

∫
Ω

ṽq + t (ψ̃q − ṽq)− ṽq

t
dx

≥
∫

Ω

ṽq−1 σ
t − ṽ
t

dx− 1

q

∫
Ω

(ψ̃q − ṽq) dx,

where in the last inequality we used that ṽ is a supersolution and the fact that σt − ṽ is a feasible
test function. Moreover, we observe that almost everywhere in Ω it holds

lim
t→0+

σt − ṽ
t

=
d

dt
σt|t=0 =

1

q
ṽ1−q (ψ̃q − ṽq).

Then we can pass to the limit as t goes to 0: from (3.6) and the estimate above, we obtain

Fq,1(ψ̃)− Fq,1(ṽ) ≥ 1

q

∫
Ω

ṽq−1 ṽ1−q (ψ̃q − ṽq) dx− 1

q

∫
Ω

(ψ̃q − ṽq) dx = 0,

thanks to Fatou’s Lemma and to the fact that v > 0 almost everywhere in Ω, by assumption. This
finally established (3.5), as desired. �

Remark 3.6. Of course, the previous result implies that a positive function v ∈ Xq,p(Ω) is a weak
solution of (1.1) if and only if it is a solution of

min
ψ∈Xq,p(Ω)

{
Fq,α(ψ) : ψ − v ∈W 1,p

0 (Ω)
}
,

i.e. if it minimizes Fq,α with respect to its own boundary datum.

4. A comparison principle

The main tool of this paper is the following comparison principle for positive supersolutions and
subsolutions of the Lane-Emden equation (1.1). This is proved under minimal assumptions, both
on the set and the functions.

Theorem 4.1 (Comparison principle). Let α > 0 and 1 ≤ q < p < ∞. Let Ω ⊂ RN be an open
connected set. Assume that u, v ∈ Xq,p(Ω) are two positive functions, such that u is a subsolution
and v is a supersolution of (1.1). If (u− v)+ ∈ Xq,p

0 (Ω), then

v ≥ u, a. e. in Ω.
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Proof. We first observe that for q = 1, the result is well-known. It can be obtained with exactly the
same proof of the comparison principle for p−harmonic functions (see for example [33, Theorem
2.15]). For completeness, we sketch the argument: it is sufficient to take the test function ψ =
(u− v)+ ∈ Xq,p

0 (Ω) in the weak formulations for u and v. This gives∫
Ω

〈|∇u|p−2∇u,∇(u− v)+〉 dx ≤ α
∫

Ω

(u− v)+ dx,

and ∫
Ω

〈|∇v|p−2∇v,∇(u− v)+〉 dx ≥ α
∫

Ω

(u− v)+ dx.

By subtracting them, we obtain∫
{u>v}

〈|∇u|p−2∇u− |∇v|p−2∇v,∇u−∇v〉 dx ≤ 0.

If we now use that the vector field z 7→ |z|p−2 z is strictly monotone5, we get the desired conclusion
with standard arguments. We leave the details to the reader.

Let us now focus on the case 1 < q < p. With Proposition 3.5 and the hidden convexity property
at hand, we can essentially reproduce the proof of the classical comparison principle for strictly
convex integral functionals of the Calculus of Variations, see for example [27, Lemma 1.1]. The
identification of equality cases in the hidden convexity property will play a crucial role.

We define ϕ = min{v, u} and observe that it has the following properties

ϕ ∈ Xq,p(Ω), u− ϕ = (u− v)+ ∈ Xq,p
0 (Ω) and ϕ ≤ u in Ω,

so that it belongs toA−(u). Observe that, since u is a positive subsolution of (1.1), from Proposition
3.5 it is a subminimum for Fq,α, as well. By using this and the properties of ϕ, we get

(4.1) Fq,α(ϕ) ≥ Fq,α(u).

By recalling that the weak gradient of ϕ is given by (see [32, Corollary 6.18])

∇ϕ =

 ∇v, a. e. on {v < u},
∇u, a. e. on {u < v},
∇v = ∇u, a. e. on {v = u},

inequality (4.1) entails that

1

p

∫
{v<u}

|∇v|p dx− α

q

∫
{v<u}

|v|q dx ≥ 1

p

∫
{v<u}

|∇u|p dx− α

q

∫
{v<u}

|u|q dx.

If we add the quantity
1

p

∫
{u≤v}

|∇v|p dx− α

q

∫
{u≤v}

|v|q dx,

on both sides, we end up with

(4.2) Fq,α(v) ≥ Fq,α(ψ), where ψ = max{u, v} ∈ Xq,p(Ω).

5In other words, we have

〈|z|p−2 z − |w|p−2 w, z − w〉 ≥ 0,

and the equality holds if and only if z = w. This property is a consequence of the strict convexity of the map
z 7→ |z|p/p, whose gradient is precisely z 7→ |z|p−2 z.
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Observe that ψ has the following properties

ψ − v = (u− v)+ ∈ Xq,p
0 (Ω) and v ≤ ψ in Ω,

i. e. it belongs to A+(v). Since v is a positive supersolution of (1.1), it is a superminimum of Fq,α
(again thanks to Proposition 3.5). This remark and the fact that ψ ∈ A+(v) imply that we must
have

Fq,α(v) ≤ Fq,α(ψ),

as well. Thus equation (4.2) must be an identity.
We now set

σ =

(
vq + ψq

2

) 1
q

∈ Xq,p(Ω),

and use the hidden convexity property (2.5) with t = 1/2, so to obtain

(4.3) Fq,α(σ) ≤ 1

2
Fq,α(v) +

1

2
Fq,α(ψ) = Fq,α(v).

Since ψ − v ∈ Xq,p
0 (Ω), by Proposition 2.11 we have σ − v ∈ Xq,p

0 (Ω), as well. Moreover, since by
construction ψ ≥ v, we also have σ ≥ v. We can thus test the superminimality of v against σ and
get that actually also (4.3) must hold as an equality. In particular, we have∫

Ω

|∇σ|p dx =
1

2

∫
Ω

|∇v|p dx+
1

2

∫
Ω

|∇ψ|p dx.

We use the equality cases of Theorem 2.9 with r = q < p and t = 1/2, so to get that

either ψ = v or ψ and v are both constant.

In the first case we directly get the desired conclusion, since ψ = max{u, v}. The second case can
not occur, since v is positive and from the equation we easily see that a positive constant can not
be a supersolution. This concludes the proof. �

Remark 4.2. The assumption (u− v)+ ∈ Xq,p
0 (Ω) is a weak surrogate of the usual condition

v ≥ u on ∂Ω,

appearing in comparison principles. Whenever a trace theory is available (for example, if Ω is
smooth enough), the two conditions coincide.

From the comparison principle, we get the following uniqueness result.

Theorem 4.3 (Uniqueness of minimizers). Let α > 0 and 1 ≤ q < p <∞. Let Ω ⊂ RN be an open
connected set, which is q−admissible. For every function U ∈ Xq,p(Ω), the minimization problem

inf
ψ∈Xq,p(Ω)

{
Fq,α(ψ) : ψ − U ∈W 1,p

0 (Ω)
}
,

admits:

(i) exactly one solution, when U ∈ Xq,p(Ω) \ W 1,p
0 (Ω) is non-negative. Moreover, such a

solution is positive;

(ii) exactly two solutions, when U ∈ W 1,p
0 (Ω). In this case, both solutions have constant sign

and they coincide, up to the choice of the sign.
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Proof. Observe that we already know that the minimization problem does admit a solution, by
virtue of Theorem 3.3. We will also rely on the optimality conditions, contained in the same result.

First of all we note that a minimizer u can not identically vanish. Indeed this is trivial in the case
(i) since the null function is not admissible for the minimization problem. In the case (ii) it is

sufficient to take a function ψ ∈W 1,p
0 (Ω) \ {0} and 0 < t� 1 to get

Fq,α(t ψ) =
tp

p

∫
Ω

|∇ψ|p dx− α tq

q

∫
Ω

|ψ|q dx < 0 = Fq,α(0),

since q < p.
Furthermore, we observe that, in both cases (i) and (ii), if u is a minimizer then |u| is a minimizer,

as well. Indeed, |u| − U ∈ W 1,p
0 (Ω) thanks to Lemma 2.4 and to the fact that U is non-negative.

Hence, since Fq,α is even and |u| is still admissible, we obtain that |u| is a minimizer, as well.
By minimality for both u and |u|, we deduce that u+ is weakly p−superharmonic. Indeed, when
1 < q < p we have∫

Ω

〈|∇u|p−2∇u,∇ψ〉 dx = α

∫
Ω

|u|q−2 uψ dx, for every ψ ∈W 1,p
0 (Ω),

and ∫
Ω

〈|∇|u||p−2∇|u|,∇ψ〉 dx = α

∫
Ω

|u|q−1 ψ dx, for every ψ ∈W 1,p
0 (Ω).

We can sum up these two integral identities: by observing that

|u|q−2 u+ |u|q−1

2
= (u+)q−1, a. e. in Ω,

and6

|∇u|p−2∇u+ |∇|u||p−2∇|u|
2

= |∇u+|p−2∇u+, a. e. in Ω,

we then obtain∫
Ω

〈|∇u+|p−2∇u+,∇ψ〉 dx = α

∫
Ω

(u+)q−1 ψ dx, for every ψ ∈W 1,p
0 (Ω).

In particular, u+ is a weakly p−superharmonic function on Ω. In the case q = 1, a little additional
care is needed. From Theorem 3.3, we know that∫

Ω

〈|∇u|p−2∇u,∇ψ〉 dx ≥ −α
∫

Ω

ψ dx, for every ψ ∈W 1,p
0 (Ω), ψ ≥ 0,

and ∫
Ω

〈|∇|u||p−2∇|u|,∇ψ〉 dx = α

∫
Ω

ψ dx, for every ψ ∈W 1,p
0 (Ω).

We can sum up the two relations as above, when testing with a non-negative ψ: the terms containing
α cancel and we now directly get that u+ is weakly p−superharmonic.

6It is sufficient to use the following classical fact from the theory of Sobolev spaces

∇|u| =


∇u, a. e on {u > 0},
−∇u, a. e on {u < 0},

0, a. e on {u = 0},

see for example [32, Theorem 6.17].
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We can now prove uniqueness of the minimizer. Let us start with case (i). In this case any minimizer

must be positive. Indeed, let u be a minimizer. The assumption u−U ∈W 1,p
0 (Ω) and the fact that

U ∈ Xq,p(Ω) \W 1,p
0 (Ω) is non-negative entail that we must have

u+ 6≡ 0.

Indeed, if u+ would identically vanish, we would have u = −u− and |u| = u−. By Lemma 2.4 we

know that |u| − U ∈W 1,p
0 (Ω). Thus we would obtain

U =
(U − u) + (U − |u|)

2
∈W 1,p

0 (Ω),

which contradicts the assumption on U .
Since u+ is weakly p−superharmonic on the connected set Ω, the minimum principle implies

that we must have u+ > 0 almost everywhere in Ω. In particular, we get

u = u+ > 0 in Ω,

as desired.
Now we assume by contradiction that the minimization problem above admits two distinct

minimizers v, u ∈ Xq,p(Ω). From the discussion above, v and u are positive functions. Of course,
we have

(u− v)+ ∈W 1,p
0 (Ω) and (v − u)+ ∈W 1,p

0 (Ω).

We can then apply Theorem 4.1, first by considering u as a subsolution of (1.1) and v as a super-
solution, then the other way round. In conclusion we get

v ≥ u a. e. in Ω and u ≥ v a. e. in Ω.

This implies that v and u must coincide in Ω, thus obtaining a contradiction.

We now focus on case (ii), which is slightly subtler. In this case, we first prove that each minimizer
is either positive or negative. Indeed, let u be a minimizer, we write

u = u+ − u− and observe that u+, u− ∈W 1,p
0 (Ω).

If u+ 6≡ 0 then the same argument as above shows that u = u+ > 0 almost everywhere in Ω. If on
the contrary u+ ≡ 0, we get u = −u−. Since the functional Fq,α is even, we get that −u = u− is
still a minimizer. It is actually a non-negative minimizer, thus it solves the relevant Euler-Lagrange
equation, by Theorem 3.3. In particular, u− is a non-negative weakly p−superharmonic function,
which is not identically vanishing. Again by the minimum principle, we get that u− must be positive
on Ω and thus the desired conclusion follows.

Finally, we assume to have two distinct minimizers v, u ∈W 1,p
0 (Ω). The previous considerations

and Theorem 3.3 show that v and u are both constant sign solutions of (1.1), not identically
vanishing. If we assume that they are both positive, by using Theorem 4.1 as in the first part of
the proof, we get again that u = v in Ω, which is not possible. Similarly, if both are negative, then
−u and −v are positive solutions and again we get that they must coincide. The only possibility
left is thus that u is positive and v is negative: in this case, we can apply the comparison principle
as before, to the pair u and −v. This finally gives that we must have

u = −v, a. e. in Ω.

The proof is now over. �

By joining the previous result and Remark 3.6, we get the following uniqueness result for the
Lane-Emden equation (1.1).
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Corollary 4.4. Let α > 0 and 1 ≤ q < p < ∞. Let Ω ⊂ RN be an open connected set, which is
q−admissible. For every U ∈ Xq,p(Ω) non-negative, the boundary value problem

−∆pu = α |u|q−2 u, in Ω,

u− U ∈W 1,p
0 (Ω),

u > 0, in Ω,

admits a unique solution.

Definition 4.5. Let α > 0 and 1 ≤ q < p < ∞. Let Ω ⊂ RN be an open connected set, which is
q−admissible. We will indicate by wΩ,α ∈W 1,p

0 (Ω) the unique positive solution of

min
ψ∈W 1,p

0 (Ω)
Fq,α(ψ).

In light of Theorem 4.3, such a definition is well-posed. We also observe that, by Corollary 4.4,
such a function is also the unique positive solution of (1.1) with homogeneous Dirichlet boundary
conditions. In the case α = 1, we will simply indicate this function by wΩ. By recalling Remark
2.8, we have the relation

(4.4) wΩ,α = α
1

p−q wΩ.

Remark 4.6 (The case q = 1 in a ball). In this case, the function wΩ,α can be explicitly computed,
by recalling that for every N ≥ 1 we have

wB1(x) =
p− 1

p
N−

1
p−1

(
1− |x|

p
p−1

)
, for x ∈ B1.

By combining the comparison principle with standard properties of solutions to elliptic PDEs,
we get the following “hierarchy” of solutions for the Lane-Emden equation (1.1) with homogeneous
Dirichlet boundary conditions. This asserts that all solutions must be “trapped” between wΩ,α and
−wΩ,α.

Corollary 4.7 (Hierarchy of solutions). Let α > 0 and 1 < q < p < ∞. Let Ω ⊂ RN be an open

connected set, which is q−admissible. Then for every sign-changing weak solution v ∈ W 1,p
0 (Ω) of

(1.1) with homogeneous Dirichlet boundary conditions, we have

|v| ≤ wΩ,α, a. e. in Ω.

Proof. Let v ∈ W 1,p
0 (Ω) be a solution of (1.1). We claim that V := max{v, wΩ,α} ∈ W 1,p

0 (Ω) is a
positive weak subsolution of the same equation. If this were true, then we would get from Theorem
4.1 that

v ≤ V ≤ wΩ,α, a. e. in Ω.

By repeating the argument with −v (which is still a weak solution of the same equation), we would
finally get the desired conclusion.

We are left with proving that max{v, wΩ,α} is a weak subsolution. This is quite classical, we
briefly sketch the argument: for every n ∈ N \ {0}, we take

Hn(t) =

 0, if t ≤ 0,
n t, if 0 ≤ t ≤ 1/n,

1, if t ≥ 1/n,

i.e. this is a Lipschitz approximation of the Heaviside step function. For every ψ ∈ C∞0 (Ω) non-
negative, we then insert in the weak formulations of the equations for v and wΩ,α, the test functions

ϕ = Hn(v − wΩ,α)ψ and ϕ = (1−Hn(v − wΩ,α))ψ,
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respectively. We thus get∫
Ω

〈|∇v|p−2∇v,∇v −∇wΩ,α〉H ′n(v − wΩ,α)ψ dx+

∫
Ω

〈|∇v|p−2∇v,∇ψ〉Hn(v − wΩ,α) dx

= α

∫
Ω

|v|q−2 v Hn(v − wΩ,α)ψ dx,

and

−
∫

Ω

〈|∇wΩ,α|p−2∇wΩ,α,∇v −∇wΩ,α〉H ′n(v − wΩ,α)ψ dx

+

∫
Ω

〈|∇wΩ,α|p−2∇wΩ,α,∇ψ〉 (1−Hn(v − wΩ,α)) dx

= α

∫
Ω

wq−1
Ω,α (1−Hn(v − wΩ,α))ψ dx.

We now sum up these two identities, use that the vector field z 7→ |z|p−2 z is monotone and that
Hn is non-decreasing. We can thus obtain∫

Ω

〈|∇v|p−2∇v,∇ψ〉Hn(v − wΩ,α) dx+

∫
Ω

〈|∇wΩ,α|p−2∇wΩ,α,∇ψ〉 (1−Hn(v − wΩ,α)) dx

≤ α
∫

Ω

|v|q−2 v Hn(v − wΩ,α)ψ dx

+ α

∫
Ω

wq−1
Ω,α (1−Hn(v − wΩ,α))ψ dx.

We can now pass to the limit as n goes to ∞, with a straightforward application of the Lebesgue
Dominated Convergence Theorem. By observing that for almost every x ∈ Ω we have

lim
n→∞

Hn(v(x)− wΩ,α(x)) =

{
1, if v(x) ≥ wΩ,α(x),
0, otherwise,

and recalling that (see again [32, Corollary 6.18])

∇V = ∇max{v, wΩ,α} =

 ∇wΩ,α, a. e. on {v < wΩ,α},
∇v, a. e. on {wΩ,α < v},
∇v = ∇wΩ,α, a. e. on {v = wΩ,α},

we finally obtain∫
Ω

〈|∇V |p−2∇V,∇ψ〉 dx ≤ α
∫

Ω

V q−1 ψ dx, for every ψ ∈ C∞0 (Ω), ψ ≥ 0.

Thus V is a positive weak subsolution of (1.1) and the proof is over. �

The following result collects some basic properties of the positive solution in the case of an
interval. In light of (4.4), it is not restrictive to take α = 1. This will be needed in the next section.

Lemma 4.8 (One-dimensional case). Let 1 ≤ q < p <∞. If we denote by I = (−1, 1), the function

wI ∈W 1,p
0 (I) has the following properties:

(1) it is even, monotone increasing on (−1, 0) and monotone decreasing on (0, 1);

(2) both wI and |w′I |p−2 w′I belongs to C1(I);
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(3) it is the unique solution of −(|w′I |p−2 w′I)
′ = wq−1

I , in (−1, 0),
wI(−1) = 0,
w′I(0) = 0;

(4.5)

(4) w′I(t) > 0 for every t ∈ (−1, 0);

(5) it holds

(4.6)

∫ 0

−1

|wI |q dt =

(
2

πp,q

) p q
p−q

,

where πp,q is defined in (1.5).

Proof. We proceed point by point.

(1) The fact that wI is even follows from its uniqueness. Indeed, if this were not true, the new
function w̃I(t) = wI(−t) would be another positive minimizer of Fq,1. As for the claimed
monotonicity, we observe that the new function

ŵI(t) =



∫ t

−1

|w′I(τ)| dτ, for t ∈ (−1, 0),

∫ 1

t

|w′I(τ)| dτ, for t ∈ (0, 1),

is still admissible, monotone on both subintervals and such that

|ŵ′I(t)| = |w′I(t)| and ŵI(t) ≥ wI(t), for a. e. t ∈ I.

Thus ŵI is still a minimizer and thus, by uniqueness, it must coincide with wI ;

(2) by minimality, we know that wI is a weak solution of{
−(|w′I |p−2 w′I)

′ = wq−1
I in I,

wI(−1) = wI(1) = 0.

By [26, Theorem 3.1], we know that such a problem admits a unique positive solution
u ∈ C1(I) such that |u′|p−2 u′ ∈ C1(I), as well. Such a solution is also a weak solution and
thus, by uniqueness, it must coincide with wI . This proves the claimed regularity properties
of wI ;

(3) this simply follows from the previous point and the symmetry of wI ;

(4) since wI > 0 and w′I ≥ 0 in (−1, 0), by using (4.5), we get that

−((w′I)
p−1)′ = wq−1

I > 0, in (−1, 0).

This implies that (w′I)
p−1 is strictly decreasing and the same is true for w′I , as well. In

particular,

w′I(t) > w′I(0) = 0, for every t ∈ (−1, 0),

as claimed;
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(5) finally, in order to prove (4.6), we recall that

min
ψ∈W 1,p

0 (I)

{
1

p

∫
I

|ψ′|p dt− 1

q

∫
I

|ψ|q dt
}

=
q − p
q p

(
1

λp,q(I)

) q
p−q

.

This can be proved by a standard homogenization trick, replacing ψ by t ψ and then opti-
mizing in t > 0. By recalling that from the optimality condition we have∫

I

|w′I |p dt =

∫
I

|wI |q dt,

and that it holds (simply by scaling)

λp,q(I) = 2
q−p
q

(πp,q
2

)p
,

we obtain (
1

p
− 1

q

) ∫
I

|wI |q dt = 2
q − p
q p

(
2p

(πp,q)p

) q
p−q

.

Thus (4.6) follows, by recalling that wI is even.

This concludes the proof. �

5. Applications to geometric estimates

5.1. Solutions of the Lane-Emden equation. The following expedient lemma will be useful.
We point out that here the restriction on q < p is not needed.

Lemma 5.1. Let 1 < p < ∞ and 1 ≤ q < ∞. Let f ∈ C1([a, b]) be a non-negative and non-
decreasing function, such that

|f ′|p−2f ′ ∈ C1([a, b]),

and which satisfies
−(|f ′|p−2f ′)′ = C fq−1, in [a, b],

for some C > 0. Let Ω ⊂ RN be an open set and let u ∈ W 1,p(Ω) ∩ L∞(Ω) be a weakly
p−superharmonic function. Moreover we assume that a ≤ u ≤ b almost everywhere in Ω. Then the
composition φ = f ◦ u satisfies

−∆pφ ≥ C |∇u|p φq−1, in Ω,

in weak sense.

Proof. We insert in (2.3) the test function

ψ = (|f ′(u)|p−2f ′(u)) η,

with η ∈ C∞0 (Ω) a non-negative function. Thanks to the assumptions on f and u, the Chain Rule

formula ensures that ψ ∈W 1,p
0 (Ω) ∩ L∞(Ω) and

∇ψ = (|f ′|p−2 f ′)′(u)∇u η + |f ′(u)|p−2 f ′(u)∇η.
We thus get

0 ≤ −C
∫

Ω

|∇u|p f(u)q−1η dx+

∫
Ω

|f ′(u)|p−2 f ′(u) 〈|∇u|p−2∇u,∇η〉 dx,

where we also used the equation satisfied by f . This gives in particular that∫
Ω

〈|∇f(u)|p−2∇f(u),∇η〉 dx ≥ C
∫

Ω

|∇u|pf(u)q−1η dx.
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By recalling the definition φ = f ◦ u, we can conclude. �

We will use the previous result to construct a special supersolution to the Lane-Emden equation
with some geometric contents, in open convex sets.

We recall that we denote by rΩ the inradius of a set, defined by (2.1). We also recall that we
indicate by I = (−1, 1). We then have the following

Theorem 5.2 (Double-sided pointwise estimate). Let α > 0 and 1 ≤ q < p <∞. Let Ω ⊂ RN be
an open connected set, which is q−admissible. Then if Br(x0) ⊂ Ω, it holds

(5.1) wB1,α

(
x− x0

r

)
≤ r−

p
p−q wΩ,α(x), for a. e. x ∈ Ω,

where the function on the left-hand side is extended by zero to the whole Ω. Moreover, if Ω is
bounded and convex, it also holds

(5.2) r
− p

p−q

Ω wΩ,α(x) ≤ wI,α
(
dΩ(x)

rΩ
− 1

)
, for a. e. x ∈ Ω.

Finally, both estimates are sharp.

Proof. We prove separately the lower and upper bounds. In both cases, we heavily rely on the
comparison principle of Theorem 4.1. By recalling (4.4), it is sufficient to prove the result for
α = 1.

Lower bound. Let wBr(x0) be the positive solution of (1.1) in Br(x0) ⊂ Ω, with α = 1. Then, by
Remark 2.8 and the uniqueness of the positive solution, we know that

wBr(x0)(x) = r
p

p−q wB1

(
x− x0

r

)
.

Since wBr(x0) ∈W 1,p
0 (Br(x0)) and wΩ ≥ 0 on Br(x0), by Lemma 2.4 part (ii), we have that

(wBr(x0) − wΩ)+ ∈ Xq,p
0 (Br(x0)) = W 1,p

0 (Br(x0)).

Moreover both wBr(x0) and wΩ are positive solutions to (1.1) in Br(x0). Hence, thanks to Theorem
4.1, we obtain

(5.3) r
p

p−q wB1

(
x− x0

r

)
= wBr(x0)(x) ≤ wΩ(x), for a. e. x ∈ Br(x0).

Moreover, we can extend wBr(x0) to the whole Ω by setting it to be zero in Ω \Br(x0). Then (5.3)
holds almost everywhere in Ω.

Upper bound. We define

u =
dΩ

rΩ
− 1 ∈W 1,p(Ω) ∩ L∞(Ω),

and observe that this is a weakly p−superharmonic function. Indeed, since Ω is convex, the distance
function dΩ is concave and thus weakly superharmonic (see [2]). By further observing that |∇dΩ| = 1
almost everywhere in Ω, we get that it is actually weakly p−superharmonic, for every 1 < p <∞.
Also observe that by construction, we have −1 ≤ u ≤ 0.

If we consider the composition φ = wI ◦ u, in light of Lemma 5.1 and of the properties of wI
contained in Lemma 4.8, we know that φ ∈W 1,p

0 (Ω) is a weak positive solution of

−∆pφ ≥
1

rpΩ
φq−1 in Ω.
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By recalling Remark 2.8, if we define

φ̃ = r
p

p−q

Ω φ,

then this satisfies

−∆pφ̃ ≥ φ̃q−1, in Ω.

Moreover, we have that both wΩ and φ̃ belong to W 1,p
0 (Ω). Thus (wΩ− φ̃)+ ∈W 1,p

0 (Ω) and by the
comparison principle it holds

wΩ ≤ φ̃ = r
p

p−q

Ω wI

(
dΩ

rΩ
− 1

)
, a. e. in Ω,

as desired.

Sharpness. It is straightfoward to see that the lower bound in (5.1) is sharp. It is sufficient to
take Ω to be any N−dimensional open ball and Br(x0) = Ω, to get equality in the lower bound.

The upper bound (5.2) is slightly more complicate: indeed, the function

wI

(
dΩ(x)

rΩ
− 1

)
,

“virtually” coincides with the function wΩ for the slab Ω = RN−1 × I. However, this choice is
not feasible, since wΩ is not well-defined in our framework. Indeed, the set Ω = RN−1 × I is not
q−admissible for any 1 ≤ q < p and the minimization problem in Definition 4.5 is not well-posed.

We go through an approximation argument. For every n ∈ N \ {0}, we take

Ωn =
(
−n

2
,
n

2

)N−1

× I,

then from Lemma B.1 we have that

(5.4) lim
n→∞

wΩn(x′, xN ) = wI(xN ), for a. e. (x′, xN ) ∈ RN−1 × I.

On the other hand, by using that rΩn
= 1 for n ≥ 2 and that

lim
n→∞

dΩn(x′, xN ) = 1− |xN |, for (x′, xN ) ∈ RN−1 × I

we obtain that

(5.5) lim
n→∞

wI

(
dΩn

(x)

rΩn

− 1

)
= wI(−|xN |) = wI(xN ).

By comparing (5.4) and (5.5), we get the claimed sharpness. �

As a straightforward application of Theorem 5.2, we get the following

Corollary 5.3 (Double-sided L∞ estimate). Let α > 0 and 1 ≤ q < p < ∞. Let Ω ⊂ RN be an
open bounded convex set. Then we have

(5.6) wB1,α(0) ≤ r−
p

p−q

Ω ‖wΩ,α‖L∞(Ω) ≤
(
α

(
2

πp,q

)p) 1
p−q

(
q p− q + p

p

) 1
q

,

and both estimates are sharp.
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Proof. By still recalling (4.4), we can take α = 1, without loss of generality. Let Br(x0) ⊂ Ω, thus
in particular r ≤ rΩ, by definition of inradius. By passing to the supremum in (5.1), we obtain

wB1
(0) =

∥∥∥∥wB1

(
· − x0

r

)∥∥∥∥
L∞(Ω)

≤ r−
p

p−q ‖wΩ,α‖L∞(Ω).

The first equality follows from the fact that wB1
is a radially symmetric decreasing function. This

well-known property of wB1
can be proved by applying a radially symmetric decreasing rearrange-

ment and then appealing to the so-called Pólya-Szegő principle, see for example [29, Theorem 3].
By arbitrariness of the radius r in the estimate above, we get the lower bound in (5.6).

As for the upper bound in (5.6), we use that wI is increasing on (−1, 0), thus to finish we just
need to prove that

(5.7) wI(0) =

(
q p− q + p

p

) 1
q
(

2

πp,q

) p
p−q

.

We now use the identity (4.6) and the equation (4.5) solved by wI , in order to determine wI(0).
Since w′I does not vanish in (−1, 0), by multiplying equation (4.5) by w′I , we get

−(|w′I |p−2 w′I)
′ w′I = wq−1

I w′I ,

which can be rewritten as

−(p− 1)
d

dt

|w′I |p

p
=

d

dt

wqI
q
.

Upon integrating this on [t, 0] and using that w′I(0) = 0 , we obtain

(p− 1)

(
|w′I(t)|p

p

)
=

(wI(0))q

q
− (wI(t))

q

q
.

which implies

(5.8) (w′I(t))
p =

p

q (p− 1)
((wI(0))q − (wI(t))

q).

Finally, by using again the equation, the evenness of wI and (5.8), we obtain∫ 0

−1

|wI(t)|q dt =

∫ 0

−1

|w′I(t)|p dt =
p

q (p− 1)
(wI(0))q − p

q (p− 1)

∫ 0

−1

|wI(t)|q dt,

hence

wI(0) =

(
q p− q + p

p

) 1
q
(∫ 0

−1

|wI(t)|q dt
) 1

q

.

From this and (4.6), we finally get (5.7).
The sharpness of our L∞ estimate is now a straightforward consequence of the sharpness of

(5.1). �

Remark 5.4 (Universal L∞ estimate). By combining Corollaries 4.7 and 5.3, we get in particular
that in an open bounded convex set Ω ⊂ RN we have

r
− p

p−q

Ω ‖v‖L∞(Ω) ≤
(
α

(
2

πp,q

)p) 1
p−q

(
q p− q + p

p

) 1
q

,

for every solution v ∈W 1,p
0 (Ω) of (1.1).
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5.2. Localization of maximum points. Theorem 5.2 gives quite a precise description of wΩ,α, in
terms of geometric quantities. It is thus possible to use this description to give a simple localization
estimate for the maximum points of wΩ,α. This is the content of the following

Corollary 5.5. Let α > 0 and 1 ≤ q < p < ∞. Let Ω ⊂ RN be an open bounded convex set. For
every maximum point x0 ∈ Ω of wΩ,α, we have

dΩ(x0) ≥ CN,p,q rΩ,

where the constant 0 < CN,p,q < 1 is defined by

CN,p,q :=

(
q (p− 1)

p

) 1
p
∫ wB1

(0)

0

1

((wI(0))q − τ q)
1
p

dτ,

and wI(0) has been evaluated in (5.7).

Proof. Again by (4.4), we see that the location of maximum points is independent of α > 0. Thus
we can take α = 1. We also observe that by standard results from Elliptic Regularity, we know that
wΩ is continuous on Ω (see for example [27, Theorem 7.8]). Thus, it does admit maximum points
on Ω. If x0 ∈ Ω is such a maximum point, we get from (5.1) and (5.2)

wB1
(0) ≤ r−

p
p−q

Ω wΩ(x0) ≤ wI
(
dΩ(x0)

rΩ
− 1

)
.

This in particular entails that

(5.9) wB1
(0) ≤ wI

(
dΩ(x0)

rΩ
− 1

)
.

We recall that dΩ/rΩ − 1 ≤ 0 and observe that

wI : (−1, 0]→ (0, wI(0)]

is increasing, thus invertible. By taking the inverse function of wI , we get

(5.10) w−1
I (wB1

(0)) + 1 ≤ dΩ(x0)

rΩ
.

We now observe that for every y ∈ (0, wI(0)] we can write

w−1
I (y) = w−1

I (0) +

∫ y

0

1

w′I(w
−1
I (τ))

dτ = −1 +

∫ y

0

1

w′I(w
−1
I (τ))

dτ.

We can use (5.8) to evalute the derivative inside the integral. This gives

w−1
I (y) + 1 =

(
q (p− 1)

p

) 1
p
∫ y

0

1

(wI(0)q − τ q)
1
p

dτ.

By recalling the definition of CN,p,q, from (5.10) we get the desired conclusion. �

Remark 5.6. A result similar to the previous one has been obtained by Magnanini and Poggesi in
[35]. We refer in particular to [35, Remark 4.8], even if the estimate is not explicitly stated for our
equation. Their proof is different from ours, it is based on obtaining a refined gradient bound for
the solution wΩ. Their method of proof is inspired by the so-called P−functions method, introduced
by Payne in [42].
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For the case q = 1, by using the explicit expression of wB1(0) and wI (see Remark 4.6), directly
from (5.9) it is not difficult to get the expression

CN,p,1 = 1− (1−N−
1

p−1 )
p−1
p .

This is worse than the constant N−1/p obtained by Magnanini and Poggesi, see [35, Corollary
4.3]. In both cases, we observe that such a constant tends to 1, as p goes to ∞. Accordingly, the
maximum points of wΩ get closer and closer to the maximum points of the distance function dΩ.

5.3. Generalized principal frequencies. By using the upper bound of Theorem 5.2, we can
prove the following sharp geometric estimate for λp,q, in convex sets. This generalizes to the case
p 6= 2 the result of [12, Theorem 1.1]. We point out that the proof here is slightly different from
that of [12], since we now rely on Theorem 5.2, which is turn follows from the comparison principle.

Theorem 5.7 (Hersch-Protter–type inequality). Let 1 ≤ q < p < ∞. Let Ω ⊂ RN be an open
bounded convex set. Then the following lower bound holds

(5.11) λp,q(Ω) |Ω|
p−q
q ≥

(πp,q
2

)p 1

rpΩ
.

Moreover, the estimate is sharp.

Proof. We take wΩ,α ∈ W 1,p
0 (Ω) the unique positive solution of (1.1) with homogeneous Dirichlet

boundary conditions, corresponding to the choice α = λp,q(Ω). By uniqueness, this must coincide
with the positive minimizer of

λp,q(Ω) = min
ψ∈W 1,p

0 (Ω)

{∫
Ω

|∇ψ|p dx :

∫
Ω

|ψ|q dx = 1

}
,

which is a positive solution of the same boundary value problem, by optimality. Thus in particular
we have

(5.12)

∫
Ω

|wΩ,α|q dx = 1.

We also observe that from Theorem 5.2, we get

wΩ,α(x) ≤ r
p

p−q

Ω wI,α

(
dΩ(x)

rΩ
− 1

)
, in Ω.

We raise to the power q and integrate over Ω. By taking (5.12) into account and using (4.4) with
α = λp,q(Ω), this yields

(5.13) 1 ≤ (λp,q(Ω) rpΩ)
q

p−q

∫
Ω

[
wI

(
dΩ(x)

rΩ
− 1

)]q
dx.

In order to conclude the proof, we need to extract the geometrical content from the last integral.
By using the Coarea Formula and the fact that |∇dΩ| = 1 almost everywhere in Ω, we can write∫

Ω

[
wI

(
dΩ(x)

rΩ
− 1

)]q
dx =

∫ rΩ

0

[
wI

(
t

rΩ
− 1

)]q
P (t) dt,

where we set

P (t) = HN−1(∂Ωt) and Ωt =
{
x ∈ Ω : dΩ(x) > t

}
.

We introduce the function

ξ(t) =

∫ t

0

[
wI

(
τ

rΩ
− 1

)]q
dτ.
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It is not difficult to see that t 7→ ξ(t)/t is monotone increasing, while t 7→ P (t) is decreasing by
convexity of Ω (see for example [20, Lemma 2.2.2]). By appealing to [12, Lemma A.1], we get∫ rΩ

0

[
wI

(
t

rΩ
− 1

)]q
P (t) dt ≤ ξ(rΩ)

rΩ

∫ rΩ

0

P (t) dt.

By recalling the definition of ξ and using again Coarea Formula, this is the same as∫ rΩ

0

[
wI

(
t

rΩ
− 1

)]q
P (t) dt ≤ |Ω|

rΩ

∫ rΩ

0

[
wI

(
t

rΩ
− 1

)]q
dt.

Finally, by making the change of variable s = t/rΩ − 1, we obtain∫
Ω

[
wI

(
dΩ(x)

rΩ
− 1

)]q
dx ≤ |Ω|

∫ 0

−1

wI(s)
q ds.

By inserting this estimate into (5.13) and recalling (4.6), we eventually conclude the proof of the
inequality.

As in the case p = 2, we show that inequality (5.11) is asimptotically sharp for the slab-type
sequence

ΩL =

(
−L

2
,
L

2

)N−1

× I ⊂ RN .

Indeed, for L > 1 we have that

(5.14) rΩL
= 1 hence

(πp,q
2

)p 1

rpΩL

=
(πp,q

2

)p
.

In order to estimate λp,q(ΩL), we use that (see [10, Main Theorem])

λp,q(ΩL) ≤
(πp,q

2

)p ( P (ΩL)

|ΩL|1−
1
p + 1

q

)p
.

By joining this estimate and (5.11), we get

1 ≤
(

2

πp,q

)p
rpΩL
|ΩL|

p−q
q λp,q(ΩL) ≤ rpΩL

(
P (ΩL)

|ΩL|

)p
.

If we now recall (5.14) and use that

P (ΩL) ∼ 2LN−1, |ΩL| = 2LN−1, as L→ +∞,

we get

lim
L→+∞

[(
2

πp,q

)p
rpΩL
|ΩL|

p−q
q λp,q(ΩL)

]
= 1,

which proves the claimed sharpness of the estimate. �

Remark 5.8 (More general sets). Apart for the simple lower bound (5.1), all the results of Section
5 have been proved under the assumption that Ω is convex. Actually, in the proof of Theorem 5.2,
convexity was used in the proof of the upper bound (5.2) only to assure that the distance function
dΩ was weakly superharmonic. Thus the upper bound (5.2) (and consequently all its consequences
in Section 5) continues to hold for all sets such that

(5.15) −∆dΩ ≥ 0, in Ω,
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in weak sense. For completeness, we recall that condition (5.15) is equivalent to require that Ω is
convex in dimension N = 2, but it is otherwise a weaker condition for N ≥ 3, see [2].

Appendix A. Quantified convexity of power functions

Lemma A.1. Let r ≥ 2. For every z, w ∈ RN and every t ∈ [0, 1] we have

t |z|r + (1− t) |w|r ≥ |t z + (1− t)w|r + C t (1− t) |z − w|r,

where C = C(r) > 0.

Proof. For simplicity, we set F (z) = |z|r. For t = 0 or t = 1 there is nothing to prove, so let us
assume 0 < t < 1. From [34, Lemma 4.2, equation (4.3)], we know that there exists Cr > 0 such
that

(A.1) F (ξ) ≥ F (ζ) + 〈∇F (ζ), ξ − ζ〉+ Cr |ξ − ζ|r, for every ξ, ζ ∈ RN .

We use (A.1) with

ξ = z and ζ = t z + (1− t)w.
We obtain

F (z) ≥ F (t z + (1− t)w) + (1− t) 〈∇F (t z + (1− t)w), z − w〉+ Cr (1− t)r |z − w|r.(A.2)

Similary, we use (A.1) with

ξ = w and ζ = t z + (1− t)w

This now yields

(A.3) F (w) ≥ F (t z + (1− t)w) + t 〈∇F (t z + (1− t)w), w − z〉+ Cr t
r |z − w|r.

We multiply (A.2) by t, then multiply (A.3) by 1− t and sum up. The outcome is the following

(1− t)F (w) + t F (z) ≥ F (t z + (1− t)w)

+ Cr
[
(1− t)r−1 + tr−1

]
t (1− t) |z − w|r.

By using convexity of the function τ 7→ τ r−1, we get

(1− t)r−1 + tr−1 ≥ 22−r,

and thus the conclusion. �

Remark A.2. We observe that the extra term Cr |ξ − ζ|r in (A.1) permits to prove an improved
version of the classical Jensen inequality for the convex function F (z) = |z|r, containing a suitable
remainder term. A general class of functions which satisfy this kind of stronger Jensen’s inequality
is widely studied in [1]. We owe this remark and reference [1] to the kind courtesy of an anonymous
referee.

Lemma A.3. Let 1 < r < 2. For every z, w ∈ RN and every t ∈ [0, 1] we have

t |z|r + (1− t) |w|r ≥ |t z + (1− t)w|r + C t (1− t)
(
|z|2 + |w|2

) r−2
2 |z − w|2,

where C = C(r) > 0.

Proof. The proof is the same as that of Lemma A.1. It is sufficient to use this time [34, Lemma
4.2, equation (4.4)]. We leave the details to the reader. �
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Appendix B. Asymptotics of the positive solution in a slab-type sequence

We still use the notation wΩ of Definition 4.5. For every L > 0, we indicate by

(B.1) ΩL =

(
−L

2
,
L

2

)N−1

× I,

where we recall that I = (−1, 1). We then have the following convergence result.

Lemma B.1. Let 1 ≤ q < p <∞, we define the function

U∞(x′, xN ) = wI(xN ), for x′ ∈ RN−1, xN ∈ I.
Then for every L0 > 0 we have

lim
n→∞

‖wΩn
− U∞‖Lp(ΩL0

) = 0.

Proof. We will adapt to our nonlinear situation a related argument from [15, Lemma 7.2], for the
case p = 2 and q = 1.

We extend all functions wΩL
to the whole slab RN−1× I, by putting them constantly equal to 0

outside ΩL. Observe that, by Elliptic Regularity (see for example [27, Theorem 7.8]), we know that
wΩL

is Hölder continuous on ΩL and thus it takes the homogeneous Dirichlet boundary condition in
classical pointwise sense. Accordingly, the extended functions are Hölder continuous on RN−1 × I.

We first observe that
wΩL2

≥ wΩL1
, for L2 ≥ L1,

by the comparison principle of Theorem 4.1, thanks to the fact that ΩL2
⊃ ΩL1

. Thus, we get that
{wΩL

}L>0 is a family of monotone increasing continuous functions. Moreover, we have the uniform
upper bound

(B.2) wΩL
≤ wI(0), in RN−1 × I,

thanks to (5.1). Then, the pointwise limit

(B.3) U(x) = lim
L→+∞

wΩL
(x), for x ∈ RN−1 × I,

is well-defined. Observe that this is a bounded function, which still satisfies (B.2). We also notice
that, if we fix L0 > 0 as in the statement, we have

(B.4) lim
L→+∞

∫
Ω4L0

|wΩL
− U |p dx = lim

n→∞

∫
Ω4L0

(U − wΩL
)p dx = 0,

thanks to the Monotone Convergence Theorem. We devote the rest of the proof to show that

(B.5) U = U∞, in RN−1 × I.
Let us now work with the sequence {wΩn}n≥4L0 , where Ωn is defined by (B.1), with the choice

L = n. We take η ∈ C∞(Ω4L0
) a cut-off function such that

0 ≤ η ≤ 1, η ≡ 1 on Ω2L0 , ‖∇η‖L∞ ≤
C

L0
,

and
η ≡ 0 on Ω4L0 \ Ω3L0 .

Then we insert the test function ψ = ηp wΩn in the weak formulation of (1.1) for wΩn . We get∫
Ωn

|∇wΩn
|p ηp dx+ p

∫
Ωn

〈|∇wΩn
|p−2∇wΩn

,∇η〉 ηp−1 wΩn
dx =

∫
Ωn

wqΩn
ηp dx.
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By Young’s inequality, for every δ > 0 we have

p 〈|∇wΩn
|p−2∇wΩn

,∇η〉 ηp−1 wΩn
≥ −δ (p− 1) |∇wΩn

|p ηp

− δ−(p−1) wpΩn
|∇η|p.

By choosing δ = 1/(2 p− 2), we then obtain the Caccioppoli-type inequality

1

2

∫
Ωn

|∇wΩn
|p ηp dx ≤ (2 p− 2)p−1

∫
Ωn

|∇η|p wpΩn
dx+

∫
Ωn

wqΩn
ηp dx.

By using this estimate, the properties of η and the upper bound (B.2), we then obtain in particular

(B.6)

∫
Ω2L0

|∇wΩn
|p dx ≤ C, for every n ≥ 4L0.

for some uniform constant C > 0. This implies that the sequence {wΩn
}n≥4L0

is bounded in
W 1,p(Ω2L0

). Thus it weakly converges to a function u ∈ W 1,p(Ω2L0
): by uniqueness of the limit,

we must have u = U . This in particular implies that U belongs to W 1,p(Ω2L0
). By also using the

compactness of the trace embedding (see [31, Corollary 18.4])

W 1,p(Ω2L0
) ↪→ Lp(∂Ω2L0

),

and the boundary condition

wΩn = 0, on (−L0, L0)
N−1 × {−1, 1},

we get that the trace of U must have the same property.

We claim that U weakly solves the Lane-Emden equation (1.1) in ΩL0
. We take ζ ∈ C∞(Ω3L0

) a
cut-off function such that

0 ≤ ζ ≤ 1, ζ ≡ 1 on ΩL0
, ‖∇ζ‖L∞ ≤

C

L0
,

and

ζ ≡ 0 on Ω3L0 \ Ω2L0 .

Then we have∫
Ω2L0

〈|∇wΩn |p−2∇wΩn ,∇wΩn −∇U〉 ζ dx =

∫
Ω2L0

〈|∇wΩn |p−2∇wΩn ,∇((wΩn − U) ζ)〉 dx

−
∫

Ω2L0

〈|∇wΩn
|p−2∇wΩn

,∇ζ〉 (wΩn
− U) dx

=

∫
Ω2L0

wq−1
Ωn

(wΩn
− U) ζ dx

−
∫

Ω2L0

〈|∇wΩn
|p−2∇wΩn

,∇ζ〉 (wΩn
− U) dx,

(B.7)

where we used the equation for wΩn , tested against the function ψ = ζ (wΩn − U). Indeed, this is
a feasible test function, thanks to the condition on the trace of wΩn

− U . We now observe that

lim
n→∞

∫
Ω2L0

wq−1
Ωn

(wΩn
− U) ζ dx = 0,
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thanks to the uniform bound (B.2) and to the strong convergence (B.4). Moreover, by using (B.6)
and again (B.4), we also get

lim
n→∞

∫
Ω2L0

〈|∇wΩn
|p−2∇wΩn

,∇ζ〉 (wΩn
− U) dx = 0.

On account of (B.7), these yield

lim
n→∞

∫
Ω2L0

〈|∇wΩn |p−2∇wΩn ,∇wΩn −∇U〉 ζ dx = 0.

Moreover, we also have

lim
n→∞

∫
Ω2L0

〈|∇U |p−2∇U,∇wΩn
−∇U〉 ζ dx = 0,

thanks to the weak convergence in W 1,p(Ω2L0
) of wΩn

. By subtracting the last two equations in
display, we get

lim
n→∞

∫
Ω2L0

〈|∇wΩn
|p−2∇wΩn

− |∇U |p−2∇U,∇wΩn
−∇U〉 ζ dx = 0,

as well. By recalling that ζ is constantly equal to 1 on ΩL0
and that the integrand is non-negative,

we get in particular

lim
n→∞

∫
ΩL0

〈|∇wΩn
|p−2∇wΩn

− |∇U |p−2∇U,∇wΩn
−∇U〉 dx = 0.

For p ≥ 2, by recalling the inequality (see [33, Section 10, equation (I)])

〈|z|p−2 z − |w|p−2 w, z − w〉 ≥ 22−p |z − w|p, for every z, w ∈ RN ,

we immediately obtain

(B.8) lim
n→∞

‖∇wΩn
−∇U‖Lp(ΩL0

;RN ) = 0.

For 1 < p < 2, it is slightly more complicate: we need to use the inequality (see [33, Section 10,
equation (VII)])

〈|z|p−2 z − |w|p−2 w, z − w〉 ≥ (p− 1) |z − w|2 (1 + |z|2 + |w|2)
p−2

2 , for every z, w ∈ RN .

This permits to infer, thanks to Hölder’s inequality, that we have∫
ΩL0

|∇wΩn
−∇U |p dx ≤

(∫
ΩL0

|∇wΩn
−∇U |2 (1 + |∇wΩn

|2 + |∇U |2)
p−2

2 dx

) p
2

×

(∫
ΩL0

(1 + |∇wΩn |2 + |∇U |2)
p
2 dx

) 2−p
2

≤

(
1

p− 1

∫
ΩL0

〈|∇wΩn |p−2∇wΩn − |∇U |p−2∇U,∇wΩn −∇U〉 dx

) p
2

×

(∫
ΩL0

(1 + |∇wΩn
|2 + |∇U |2)

p
2 dx

) 2−p
2
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By using that the last integral is uniformly bounded thanks to (B.6), while the other one converges
to 0, we get (B.8) for 1 < p < 2, as well.

Thanks to the strong convergence (B.8), we can now pass to the limit in∫
ΩL0

〈|∇wΩn
|p−2∇wΩn

,∇ψ〉 dx =

∫
ΩL0

wq−1
Ωn

ψ dx, for every ψ ∈ C∞0 (ΩL0
),

and obtain ∫
ΩL0

〈|∇U |p−2∇U,∇ψ〉 dx =

∫
ΩL0

Uq−1 ψ dx, for every ψ ∈ C∞0 (ΩL0
),

i. e. U is a solution of the Lane-Emden equation in ΩL0
, as claimed.

Next, we claim that U actually does not depend on the variable x′, but only on xN . To prove this,
let us fix two points

X = (x′0, xN ), Y = (x′1, xN ) ∈ RN−1 × I, with x′0 6= x′1.

By definition, we have

U(X) = lim
n→∞

wΩn(X) and U(Y ) = lim
n→∞

wΩn(Y ).

We introduce the “horizontally” translated set Ω̃n = Ωn −X + Y and observe that we clearly have

wΩ̃n
(x) = wΩn

(x+X − Y ), for x ∈ Ω̃n.

We notice that by construction, we have that there exists n0 = n0(|X − Y |) ∈ N such that

Ωn
4
⊂ Ω̃n ⊂ Ω4n, for every n ≥ n0.

Again by the comparison principle of Theorem 4.1, we know that

wΩ n
4
≤ wΩ̃n

≤ wΩ4 n ,

and moreover, we have

lim
n→∞

wΩ n
4

(x) = lim
n→∞

wΩ4 n
(x) = U(x),

thanks to (B.3). This in turn implies that

lim
n→∞

wΩ̃n
(x) = U(x),

as well. We then obtain

U(X) = lim
n→∞

wΩn(X) = lim
n→∞

wΩ̃n
(Y ) = U(Y ),

as desired.

By resuming, we get that U is a positive weak solution of
−∆pU = Uq−1, in ΩL0

,

U = 0, on

(
−L0

2
,
L0

2

)N−1

× {−1, 1},

which does not depend on the variable x′. In particular, we have that xN 7→ U(x′, xN ) is a weak
solution of the same one-dimensional problem solved by wI , as well. By uniqueness of the solution
and arbitrariness of L0, we finally get (B.5). This concludes the proof. �
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Remark B.2. The Lp convergence of the previous result can actually be upgraded to a uniform
convergence. It is sufficient to observe that U∞ is continuous, that {wΩn}n∈N is a sequence of
monotone increasing continuous functions and then use Dini’s Theorem. We leave the details to
the reader.
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