The effective cone of a Mori dream space admits two wall-and-chamber decompositions called Mori chamber and stable base locus decompositions. In general the former is a nontrivial refinement of the latter. We investigate, from both the geometrical and combinatorial viewpoints, the differences between these decompositions. Furthermore, we provide a criterion to establish whether the two decompositions coincide for a Mori dream space of Picard rank two, and we construct an explicit example of a Mori dream space of Picard rank two for which the decompositions are different, showing that our criterion is sharp. Finally, we classify the smooth toric 3-folds of Picard rank three for which the two decompositions are different.

On Mori chamber and stable base locus decompositions

Laface A.
Primo
;
Massarenti A.
Secondo
;
2020

Abstract

The effective cone of a Mori dream space admits two wall-and-chamber decompositions called Mori chamber and stable base locus decompositions. In general the former is a nontrivial refinement of the latter. We investigate, from both the geometrical and combinatorial viewpoints, the differences between these decompositions. Furthermore, we provide a criterion to establish whether the two decompositions coincide for a Mori dream space of Picard rank two, and we construct an explicit example of a Mori dream space of Picard rank two for which the decompositions are different, showing that our criterion is sharp. Finally, we classify the smooth toric 3-folds of Picard rank three for which the two decompositions are different.
2020
Laface, A.; Massarenti, A.; Rischter, R.
File in questo prodotto:
File Dimensione Formato  
Alex_Antonio_Rick_TAMS.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 411.54 kB
Formato Adobe PDF
411.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1805.10925.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 435.06 kB
Formato Adobe PDF
435.06 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2481901
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact