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ON MORI CHAMBER AND STABLE BASE LOCUS DECOMPOSITIONS

ANTONIO LAFACE, ALEX MASSARENTI, AND RICK RISCHTER

Abstract. The effective cone of a Mori dream space admits two wall-and-chamber decompositions called Mori
chamber and stable base locus decompositions. In general the former is a non trivial refinement of the latter.
We investigate, from both the geometrical and the combinatorial viewpoints, the differences between these
decompositions. Furthermore, we provide a criterion to establish whether the two decompositions coincide for
a Mori dream space of Picard rank two, and we construct an explicit example of a Mori dream space of Picard
rank two for which the decompositions are different, showing that our criterion is sharp. Finally, we classify the
smooth toric 3-folds of Picard rank three for which the two decompositions are different.
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1. Introduction

Mori dream spaces, introduced by Y. Hu and S. Keel in [HK00], are varieties whose total coordinate ring,
called the Cox ring, is finitely generated. The birational geometry of a Mori dream space is encoded in its cone
of effective divisors together with a chamber decomposition on it, called Mori chamber decomposition. Two
effective divisors lie in the interior of the same Mori chamber if there is an isomorphism between the target
spaces of the corresponding dominant rational maps making the obvious triangular diagram commutative.

The birational geometry of a Mori dream spaces can also be described via the Variation of Geometric Invariant
Theory of its Cox ring. As proven in [HK00], [ADHL15, Section 3.3.4], and [HKP06, Appendix A] in the case
of complete toric varieties using the volume function, from this point of view GIT chambers correspond to Mori
chambers.

The pseudo-effective cone of a projective variety with zero irregularity, so in particular of a Mori dream space,
can be decomposed into chambers depending on the stable base locus of the corresponding linear series. Such
decomposition, called stable base locus decomposition, in general is coarser than the Mori chamber decomposition.

The Mori theory of important classes of moduli spaces such as moduli of curves [Has05], [HH09], [HH13],
Hilbert schemes of points on surfaces [BC13], [ABCH13], Kontsevich spaces of stable maps [Che08], [CC10],
[CC11], spaces of complete forms [Hue15], [Mas18a], [Mas18b], and moduli spaces of parabolic bundles [Muk05],
[AM16] have recently been studied in a series of papers.

In this paper, given a Mori dream space X , we aim to understand how far is the stable base locus decompo-
sition of EffpXq from determining its Mori chamber decomposition. In Section 3 we produce examples of Mori
dream spaces for which the two decompositions are different and we interpret them both from the geometric
and the combinatorial viewpoints.
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While producing examples of either non compact varieties or of varieties with Picard rank greater than or
equal to three turns out to be fairly feasible, it is quite tricky to exhibit a normal Q-factorial projective Mori
dream space of Picard rank two for which the Mori chamber decomposition is a non trivial refinement of the
stable base locus decomposition. In Example 3.6 we construct such a Mori dream space, and at the best of our
knowledge this is the fist example of a projective variety displaying this particular behavior appearing in the
literature.

Theorem 1.1. Let Z be the toric variety with Cox ring KrT1, . . . , T11s whose grading matrix and irrelevant
ideal are the following

Q “

„
1 1 2 2 2 2 1 0 0 0 0

0 0 1 1 1 1 2 1 1 1 1


JirrpZq “ xT1, T2y X xT3, . . . , T11y

and let F,G be two general polynomials of degree p2, 2q in the Ti. Then the ring

KrT1, . . . , T11s

pF,Gq

is the Cox ring of a projective normal Q-factorial Mori dream space X Ă Z of Picard rank two. Furthermore,
the Mori chamber decomposition of EffpXq consists of three chambers while its stable base locus decomposition
consists of two chambers.

By Proposition 2.13 if X is a toric 3-fold such that the two decompositions differ inside the movable cone
then there are at least five Mori chambers in the movable cone, and Examples 3.8, 3.9 show that Proposition
2.13 is sharp meaning that one can have that the two decompositions differ inside the movable cone with five
chambers and with three chambers in dimension higher than three. In Section 4 we restrict to the smooth case,
and we classify smooth toric 3-folds of Picard rank three such that their Mori chamber and stable base locus
decomposition do not coincide.

Theorem 1.2. Let X be a smooth toric 3-fold of Picard rank three such that its Mori chamber and stable base
locus decomposition do not coincide. Then the Mori chamber decomposition of X is one of the seven types listed
in the following table.

grading matrix Effective cone grading matrix Effective cone

G1 :“

»
–
1 0 0 1 0 0

α 1 0 0 1 0

β 0 1 0 0 1

fi
fl

α, β ą 0

G2 :“

»
–
1 0 0 1 0 0

α 1 0 0 1 0

β γ 1 0 0 1

fi
fl

α, β, γ ă 0

G3 :“

»
–

1 0 γ 1 0 0

´1 1 0 0 1 0

0 1 1 0 0 1

fi
fl

γ ą 0

G4 :“

»
–

1 β γ 1 0 0

´1 1 0 0 1 0

0 1 1 0 0 1

fi
fl

β ą 0 ą γ

G5 :“

»
–

1 β γ 1 0 0

´1 1 0 0 1 0

0 1 1 0 0 1

fi
fl

β ă 0 ă γ

G6 :“

»
–

1 β γ 1 0 0

´1 1 0 0 1 0

0 1 1 0 0 1

fi
fl

β ă γ ´ 1 ă ´1
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G7 :“

»
–
1 ´1 0 1 0 0

1 1 0 0 1 0

1 0 1 0 0 1

fi
fl

Where, in the pictures, the black region is the semi-ample cone and the two gray regions are the GIT chambers
sharing the same stable base locus. In particular, for any smooth toric 3-fold the Mori chamber and the stable
base locus decomposition coincide inside the movable cone.

In Section 5 we focus on Mori dream spaces of Picard rank two. Recall that a Mori dream space can be
recovered as a GIT quotient, with respect to a suitable polarization, of the spectrum of its Cox ring by a torus.
In the fist part of Section 5, assuming that the Picard rank is two, we reach a simple description of the non
semi-stable loci with respect to all the possible polarizations, and of the stable base loci of effective divisors
in terms of the generators of the Cox ring. Thanks to these characterizations in Theorem 5.8 we get technical
criteria on the non semi-stable loci aimed to establish whether the Mori chamber and the stable base locus
decomposition of a given Mori dream space of Picard rank two coincide. As observed in Corollary 5.13 the
irreducibility of the non semi-stable loci is a sufficient condition for the two decompositions to coincide.

In Theorem 5.14 we prove that under suitable inequalities, that need just the knowledge of the generators of
the Cox ring in order to be checked, the two decompositions coincide. Furthermore, in Proposition 5.2 we get
another criterion for the equality of the decompositions. The usefulness of these results lies in the fact that in
general, even in Picard rank two, the stable base locus decomposition is considerably easier to compute than
the Mori chamber decomposition.

Note that if X is a projective Mori dream space of Picard rank two we can fix a total order on the classes in
the effective cone: w ď w1 if w is on the left of w1. Given two convex cones λ, λ1 contained in the effective cone
we will write λ ď λ1 if w ď w1 for any w P λ and w1 P λ. Denote by tf1, . . . , fru a minimal set of homogeneous
generators for the Cox ring RpXq of X , and let wi “ degpfiq for any i.

The criteria in the Proposition 5.2, Theorem 5.14 and Corollary 5.15 can be summarized in the following
statement.

Theorem 1.3. Let X be a Q-factorial Mori dream space with Picard rank two, tf1, . . . , fru a minimal set of
homogeneous generators for the Cox ring RpXq, wi :“ degpfiq, and λA be the ample chamber of X. Denote by
c the codimension of X into its canonical toric embedding [ADHL15, Section 3.2.5]. Define

h` :“ #tfi : wi ě λAu and h´ :“ #tfi : wi ď λAu

If one of the following two conditions is satisfied

(i) all the generators of RpXq appear in the walls of the stable base locus decomposition of EffpXq,
(ii) h´ ą c and h` ą c,

then the Mori chamber decomposition and the stable base locus decomposition of EffpXq coincide.
In particular, if Z is a projective normal Q-factorial toric variety with rkpClpZqq “ 2, and X Ď Z is a

projective normal Q-factorial Mori dream hypersurface such that ı˚ : ClpZq Ñ ClpXq is an isomorphism, then
the Mori chamber and the stable base locus decompositions of both EffpZq and EffpXq coincide.

As observed in Remark 5.16, Theorem 1.1 shows that the bounds in Theorem 1.3 item piiq can not be
improved. Indeed in Theorem 1.1 we have h` “ c “ 2.

In Subsection 5.17 we show how Theorem 1.3 item piiq, together with the classification of Picard rank two
varieties, with a torus action of complexity one in [FHN16, Theorem 1.1] immediately implies that the Mori
chamber decomposition is equal to the stable base locus decomposition for this class of varieties. Note that, as
shown by the examples in Subsection 5.17, Lemma 5.5 along with the proof of Theorem 5.8 provide a concrete
method to compute Mori chamber decompositions.

We would like so stress that these results can also be useful in order to compute the Sarkisov factorization
of a birational map X 99K Y between two Q-factorial Fano varieties of Picard rank one. Indeed, if there exists
a Mori dream space Z of Picard rank two admitting a dominant morphism Z Ñ X then such a factorization is
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determined by a so called 2-ray game on Z, and such a 2-ray game is in turn determined by the Mori chamber
decomposition of EffpZq. We refer to [Cor95], [HM13], [AZ16], [Ahm17] for details on this topic and explicit
examples.

Finally, in Section 6 we apply Theorem 1.3 item piq to show that the Mori chamber decomposition of the blow-
up Gpr, nq1 of the Grassmannian Gpr, nq, parametrizing r-planes in Pn, at a point coincides with its stable base
locus decomposition, and can be described in terms of linear systems of hyperplanes containing the osculating
spaces of Gpr, nq at the blown-up point. This provides a positive answer to [MR18, Question 6.9].

All through the paper we will work over an algebraically closed field K of characteristic zero, and given
a Q-factorial Mori dream space X we will denote by MCDpXq and SBLDpXq respectively the Mori chamber
decomposition and the stable base locus decomposition of its effective cone.

Acknowledgments. We thank the referee for giving us suggestions that lead us to Section 4, Proposition 2.12,
Proposition 2.13 and Examples 3.8 and 3.9.

The first named author was partially supported by Proyecto FONDECYT Regular N. 1150732, Proyecto
FONDECYT Regular N. 1190777 and by project Anillo ACT 1415 PIA Conicyt. The second named author is a
member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni of the Istituto
Nazionale di Alta Matematica "F. Severi" (GNSAGA-INDAM).

2. Mori chamber and stable base locus decompositions

Let X be a normal projective variety over an algebraically closed field of characteristic zero. We denote by
N1pXq the real vector space of R-Cartier divisors modulo numerical equivalence. The nef cone of X is the
closed convex cone NefpXq Ă N1pXq generated by classes of nef divisors. The movable cone of X is the convex
cone MovpXq Ă N1pXq generated by classes of movable divisors. These are Cartier divisors whose stable base
locus has codimension at least two in X . The effective cone of X is the convex cone EffpXq Ă N1pXq generated

by classes of effective divisors. We have inclusions NefpXq Ă MovpXq Ă EffpXq.
We will denote by N1pXq be the real vector space of numerical equivalence classes of 1-cycles on X . The

closure of the cone in N1pXq generated by the classes of irreducible curves in X is called is called the Mori cone
of X , we will denote it by NEpXq.

A class rCs P N1pXq is called moving if the curves in X of class rCs cover a dense open subset of X . The
closure of the cone in N1pXq generated by classes of moving curves in X is called the moving cone of X and
we will denote it by movpXq. We refer to [Deb01, Chapter 1] for a comprehensive treatment of these topics.

We say that a birational map f : X 99K X 1 to a normal projective variety X 1 is a birational contraction if its
inverse does not contract any divisor. We say that it is a small Q-factorial modification if X 1 is Q-factorial and
f is an isomorphism in codimension one. If f : X 99K X 1 is a small Q-factorial modification, then the natural
pull-back map f˚ : N1pX 1q Ñ N1pXq sends MovpX 1q and EffpX 1q isomorphically onto MovpXq and EffpXq,

respectively. In particular, we have f˚pNefpX 1qq Ă MovpXq.

Definition 2.1. A normal projective Q-factorial variety X is called a Mori dream space if the following condi-
tions hold:

- Pic pXq is finitely generated, or equivalently h1pX,OXq “ 0,
- Nef pXq is generated by the classes of finitely many semi-ample divisors,
- there is a finite collection of small Q-factorial modifications fi : X 99K Xi, such that each Xi satisfies

the second condition above, and Mov pXq “
Ť

i f˚
i pNef pXiqq.

By [BCHM10, Corollary 1.3.2] smooth Fano varieties are Mori dream spaces. In fact, there is a larger class
of varieties called log Fano varieties which are Mori dream spaces as well. By the work of M. Brion [Bri93] we
have that Q-factorial spherical varieties are Mori dream spaces. An alternative proof of this result can be found
in [Per14, Section 4].

The collection of all faces of all cones f˚
i pNef pXiqq in Definition 2.1 forms a fan which is supported on

MovpXq. If two maximal cones of this fan, say f˚
i pNef pXiqq and f˚

j pNef pXjqq, meet along a facet, then there
exist a normal projective variety Y , a small modification ϕ : Xi 99K Xj, and hi : Xi Ñ Y and hj : Xj Ñ Y

small birational morphisms of relative Picard number one such that hj ˝ϕ “ hi. The fan structure on MovpXq
can be extended to a fan supported on EffpXq as follows.

Definition 2.2. Let X be a Mori dream space. We describe a fan structure on the effective cone EffpXq, called
the Mori chamber decomposition. We refer to [HK00, Proposition 1.11] and [Oka16, Section 2.2] for details.
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There are finitely many birational contractions from X to Mori dream spaces, denoted by gi : X 99K Yi. The
set Excpgiq of exceptional prime divisors of gi has cardinality ρpX{Yiq “ ρpXq ´ ρpYiq. The maximal cones C

of the Mori chamber decomposition of EffpXq are of the form: Ci “
@
g˚
i

`
NefpYiq

˘
,Excpgiq

D
. We call Ci or its

interior C
˝

i a maximal chamber of EffpXq.

Definition 2.3. Let X be a normal projective variety with finitely generated divisor class group ClpXq :“
WDivpXq{PDivpXq, in particular h1pX,OXq “ 0. The Cox sheaf and Cox ring of X are defined as

R :“
à

rDsPClpXq

OXpDq RpXq :“ ΓpX,Rq

Recall that R is a sheaf of ClpXq-graded OX -algebras, whose multiplication maps are discussed in [ADHL15,
Section 1.4]. In case the divisor class group is torsion-free one can just take the direct sum over a subgroup of
WDivpXq, isomorphic to ClpXq via the quotient map, getting immediately a sheaf of OX -algebras. Denote by
pX the relative spectrum of R and by X the spectrum of RpXq. The ClpXq-grading induces an action of the

quasi-torus HX :“ SpecCrClpXqs on both spaces. The inclusion OX Ñ R induces a good quotient pX : pX Ñ X

with respect to this action. Summarizing we have the following diagram

pX Ď X

X

pX

to which we will refer as the Cox construction of X . In case RpXq is a finitely generated algebra the complement

of pX in the affine variety X has codimension ě 2. This subvariety is the irrelevant locus and its defining ideal
is the irrelevant ideal JirrpXq Ď RpXq.

Remark 2.4. By [HK00, Proposition 2.9] a normal and Q-factorial projective variety X over an algebraically
closed field K, with finitely generated Picard group is a Mori dream space if and only if RpXq is a finitely
generated K-algebra. Furthermore, the following equality holds

dimRpXq “ dimpXq ` rankClpXq

see for instance [ADHL15, Theorem 3.2.1.4].

Let X be a normal Q-factorial projective variety, and let D be an effective Q-divisor on X . The stable base
locus BpDq of D is the set-theoretic intersection of the base loci of the complete linear systems |sD| for all
positive integers s such that sD is integral

BpDq “
č

są0

BpsDq.

Since stable base loci do not behave well with respect to numerical equivalence, we will assume that h1pX,OXq “
0 so that linear and numerical equivalence of Q-divisors coincide.

Then numerically equivalent Q-divisors on X have the same stable base locus, and the pseudo-effective cone
EffpXq of X can be decomposed into chambers depending on the stable base locus of the corresponding linear
series called stable base locus decomposition, see [CdFG17, Section 4.1.3] for further details.

If X is a Mori dream space, satisfying then the condition h1pX,OXq “ 0, determining the stable base locus
decomposition of EffpXq is a first step in order to compute its Mori chamber decomposition.

Remark 2.5. Recall that two divisors D1, D2 are said to be Mori equivalent if BpD1q “ BpD2q and the
following diagram of rational maps is commutative

X

XpD1q XpD2q

Ă

φD2
φD1

where the horizontal arrow is an isomorphism. Therefore, the Mori chamber decomposition is a refinement of
the stable base locus decomposition.
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Let X be a Mori dream space with Cox ring RpXq and grading matrix Q. The matrix Q defines a surjection

Q : E Ñ ClpXq

from a free, finitely generated, abelian group E to the divisor class group of X . Denote by γ the positive
quadrant of EQ :“ E bZ Q. Let e1, . . . , er be the canonical basis of EQ. Given a face γ0 ĺ γ we say that

i P t1, . . . , ru is a cone index of γ0 if ei P γ0. The face γ0 is an F-face if there exists a point of X “ SpecpRpXqq
whose i-th coordinate is non-zero exactly when i is a cone index of γ0 [ADHL15, Construction 3.3.1.1]. The set
of these points is denoted by Xpγ0q.

Example 2.6. If RpXq “ KrT1,...,T5s
xT1T2`T 2

3
`T4T5y

then γ0 “ conepe1, e4q is an F-face and

Xpγ0q “ tpx1, 0, 0, x4, 0q P X : x1x4 ‰ 0u

On the other hand, conepe1, e3, e4q is not an F-face.

Given the Cox construction of X we denote by Xpγ0q Ď X the image of Xpγ0q, and given an F-face γ0 its
image Qpγ0q Ď ClpXqQ is an orbit cone of X . The set of all orbit cones of X is denoted by Ω. Accordingly to
[ADHL15, Definition 3.1.2.6] a class w P ClpXq defines the GIT chamber

(2.7) λpwq :“
č

tωPΩ :wPωu

ω

If w is an ample class of X the corresponding GIT chamber is the semi-ample cone of X . The variety X can
be reconstructed from the pair pRpXq,Φq formed by the Cox ring together with a bunch of cones, consisting of
certain subsets of the orbit cones [ADHL15, Definition 3.1.3.2]. According to [ADHL15, Example 3.1.3.6] every
GIT chamber λ defines a bunch of orbit cones

Φpλq :“ tω P Ω : ω˝ Ě λ˝u

Given a class w P ClpXq we denote by λsblpwq the subset of ClpXqQ consisting of all classes which have the
same stable base locus of w.

Proposition 2.8. Let X be a normal variety with finitely generated Cox ring, bunch of orbit cones Φ, and let
w P ClpXq be a class of X. Then

λsblpwq “
č

tωPΦ :wPωu

ω X
č

tωPΦ :wRωu

ωc

Proof. Recall that, according to [ADHL15, Construction 3.2.1.3], the set of relevant faces rlvpΦq is the set of
faces of γ which are mapped by Q to elements of Φ. Each relevant face γ0 ĺ γ defines a subset Xpγ0q Ď X

consisting of all the points of X whose i-th Cox coordinate is non-zero exactly when i is a cone index of γ0
[ADHL15, Construction 3.3.1.1]. By [ADHL15, Proposition 3.3.2.8] the stable base locus of a class w is the
union

(2.9) Bpwq :“
ď

tγ0PrlvpΦq :wRQpγ0qu

Xpγ0q

Applying Q to the elements of the set tγ0 P rlvpΦq : w R Qpγ0qu one gets the set tω P Φ : w R ωu and the
former set is completely determined by the latter. We claim that two classes w,w1 define the same stable base
locus if and only if the following holds

(2.10) tω P Φ : w P ωu “ tω P Φ : w1 P ωu

Clearly, if w,w1 define the same stable base locus then (2.10) holds. Now, assume that there is an ω P Φ

such that w1 R ω and w P ω. Let γ0 ĺ γ be such that Qpγ0q “ ω. It suffices to show that Xpγ0q is not
contained in the stable base locus of w. Indeed if Xpγ1q is any strata which contains Xpγ0q then γ0 ĺ γ1, so
that w P ω “ Qpγ0q Ď Qpγ1q. Thus Xpγ1q does not appear in (2.9), and the claim is proved. Finally, the
statement follows by observing that if

w1 P
č

tωPΦ :wPωu

ω X
č

tωPΦ :wRωu

ωc

then the cones which contain, respectively do not contain w1 are the same of those which contain, respectively
do not contain w. �
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Corollary 2.11. Let X be a normal variety with finitely generated Cox ring, bunch of orbit cones Φ and let
w P ClpXq be a class of X. Then the following inclusion holds

λpwq Ď λsblpwq

Proof. It is a direct consequence of Proposition 2.8 and of the following equalities

λpwq “
č

tωPΩ :wPωu

ω “
č

tωPΩ :wPωu

ω X
č

tωPΩ :wRωu

ωc

where the first is by definition while the second is due to the fact that any two classes in the relative interior
λpwq determine the same chamber. �

Proposition 2.12. Let X be a normal variety with finitely generated Cox ring, bunch of orbit cones Φ, and
w1, w2 P ClpXq. Then the following are equivalent:

(1) λsblpw1q “ λsblpw2q;
(2) tω P Φ : w1 P ωu “ tω P Φ : w2 P ωu;
(3)

Ş
tωPΦ :w1Pωu ω “

Ş
tωPΦ :w2Pωu ω.

Moreover, if Φ “ Φpλq, with λ distinct from λ1 and λ2, then each of the above condition is implied by conepλ Y

λ1q X λ̊2 ‰ 0 and conepλ Y λ2q X λ̊1 ‰ 0.

Proof. The equivalence of p1q with p2q is given by the proof of Proposition 2.8, and the implication p2q ñ p3q is
clear. To prove p3q ñ p2q it suffices to observe that if there is an ω P Ω such that w1 P ω but w2 R ω, then w2

would be contained in
Ş

tωPΦ :w2Pωu ω but not in
Ş

tωPΦ :w1Pωu ω, so that the two sets will be different. Finally if

conepλYλ1q X λ̊2 ‰ 0 holds then any orbit cone ω P Φpλq which contains λ1 must intersect the interior of λ2 so
that λ2 Ď ω. Thus tω P Φ : w1 P ωu Ď tω P Φ : w2 P ωu holds. Similarly one proves the opposite inclusion. �

Proposition 2.13. Let X be a toric 3-fold such there are two Mori chambers in MovpXq whose union gives a
single stable base locus chamber. Then there are at least five Mori chambers inside MovpXq.

Proof. Assume there are four Mori chambers inside MovpXq, and consider the chamber corresponding to NefpXq.
If the three remaining chambers C1, C2, C3 are adjacent to NefpXq, and C1, C2, C3 are the corresponding three
distinct flipping curves, then by Nakamaye’s theorem [Laz04, Theorem 10.3.5] we get that the stable base locus
of a divisor in Ci is Ci, and hence the stable base loci of divisors in C1, C2, C3 are distinct. Note that this
argument works also for three or less chambers.

If C1, C2 are adjacent to NefpXq and C3 is not then again Nakamaye’s theorem yields that divisors in C1, C2
have as base loci two different irreducible curves. Furthermore, the base locus of a divisor in C3 is a curve with
two components.

Now, let C1, . . . , C4 be four consecutive maximal Mori chambers contained in the moving cone of a Q-factorial
toric threefold X of Picard rank n and let X “ X1, . . . , X4 be the corresponding birational models of X . Assume
that C1 is the ample cone of X . Let τij :“ Ci X Cj and let Γij Ď Xj be the new irreducible curve produced by
the wall crossing of τij . By the previous argument the two chambers with the same stable locus are C3 and C4.
In order for C3 and C4 to have the same stable base locus on X the center Γ34 Ď X4 of the small Q-factorial
modification given by the wall crossing of τ34 must be an irreducible curve which does not exists in X . This
is possible only if this curve is the strict transform of the curve Γ12 created by the wall crossing of τ12. In
particular

Γ34 „ αΓ12 ` βΓ23,

with α, β P Q. If we denote by Hij the linear span of the cone τij in ClQpXq, then the above discussion implies
that the three hyperplanes H12, H23, H34 lie on a pencil. Each of these hyperplanes must contain at least n ´ 1

of the n ` 3 classes of generators of the Cox ring. Assuming that the intersection H12 X H23 X H34 contains r

of these classes then we have the following inequality

3pn ´ 1 ´ rq ` r ď n ` 3

which implies r ě n´ 3. If r “ n´ 3 then each of the three hyperplanes must contain exactly two more classes
of generators. Up to symmetries the possible configurations of the six classes on the three hyperplanes are the
following.
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In the last four cases at least one of the facets τij would be not contained in the interior of the moving cone (see
Proposition [ADHL15, 3.3.2.3]). In the first two cases there would be at least six Mori chambers in the moving
cone.

If r “ n ´ 2 then each of the three hyperplanes contains at least one more class. The possible configurations
are the following, where in each case still two more generators have to be added to the picture.

In the first case it is possible to fulfill these conditions only if the two more classes are as in the picture below.

In this case the moving cone contains at least five Mori chambers, as shown in Example 3.8. In the last case, up
to symmetry there is again one possibility for the open chambers where the two new classes can belong. This
is displayed in the picture below.

However, in this last case we can have either five or three chambers in the movable cone.
If r “ n ´ 1 then again each of the three hyperplanes contains at least one more class, so that the above

configurations still apply. Here we have to add only one more class to the picture and thus one of the three
cones τij would not be contained in the interior of the moving cone. �

Examples 3.8 and 3.9 in the next section show that Proposition 2.13 is sharp in the sense that one can has
Mori chamber decomposition distinct from the stable base locus decomposition inside the movable cone with
five chambers and with three chambers in dimension higher than three.

3. Examples

In this section we give examples of varieties for which the Mori chamber and the stable base locus decompo-
sition do not coincide, and we analyze this phenomenon from both the geometrical and the combinatorial point
of view.

Example 3.1. (Birational viewpoint) Consider a plane Π Ă Pn and five general points p1, . . . , p5 P Π. Let
f : X Ñ Pn be the blow-up of Pn at p1, . . . , p5 with exceptional divisors E1, . . . , E5. Then the strict transform
rΠ Ă X of Π is a del Pezzo surface of degree four. In particular rΠ is a Mori dream space.

Let e1, . . . , e5 be classes of a line in the exceptional divisors, and l the pull-back a a general line in Pn. Let
rC Ă X be an irreducible curve. If rC gets contracted by f the rC „ mei with m ą 0 for some i P t1, . . . , 5u.

Otherwise, we may write rC „ dl ´ m1e1 ´ ¨ ¨ ¨ ´ m5e5, that is rC is the strict transform of a curve C Ă Pn of
degree d having multiplicity mi at pi for i “ 1, . . . , 5.

If d ă m1 ` ¨ ¨ ¨ ` m5 then C Ă Π and rC Ă rΠ. In this case we may write rC as a linear combination with

non-negative coefficients of e1, . . . , e5, l ´ ei ´ ej , 2l ´ e1 ´ ¨ ¨ ¨ ´ e5 since these are the generators of NEprΠq. If
d ě m1 ` ¨ ¨ ¨ ` m5 then we may write

rC „ m1pl ´ e1q ` . . .m5pl ´ e5q ` pd ´ m1 ´ ¨ ¨ ¨ ´ m5ql

where l ´ ei “ pl ´ ei ´ ejq ` ej . Therefore,

NEpXq “ xei, l ´ ei ´ ej , 2l ´ e1 ´ ¨ ¨ ¨ ´ e5y
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Now, let D Ă Pn be the divisor given by the union of n ´ 2 general hyperplanes containing Π. For the strict

transform rD Ă X of D we have rD „ pn ´ 2qpH ´ E1 ´ ¨ ¨ ¨ ´ E5q, and

´KX ´ ǫ rD „ pn ` 1 ´ ǫpn ´ 2qqH ´ ppn ´ 1q ´ ǫpn ´ 2qqpE1 ` . . . E5q

where H is the pull-back of the hyperplane section of Pn via the blow-up morphism. Now, note that p´KX´ǫ rDq¨

pl´ei´ejq “ ǫpn´2q´n`3, p´KX´ǫ rDq¨p2l´ei´¨ ¨ ¨´e5q “ 3ǫpn´2q´3n`7, and p´KX´ǫ rDq¨ei “ n´1´ǫpn´2q.

Therefore, if n ě 3 we have that ´KX ´ ǫ rD is ample for any 3n´7

3n´6
ă ǫn´1

n´2
.

Furthermore, since rD is the union of n ´ 2 smooth irreducible divisors intersecting transversally along the

surface rΠ the pair pX, ǫ rDq is klt for any 0 ă ǫ ă 1. Then, for any 3n´7

3n´6
ă ǫ ă 1 the divisor ǫ rD induces a log

Fano structure on X , and [BCHM10, Corollary 1.3.2] yields that X is a Mori dream space.

Now, consider the divisor Di „ 2H ´ E1 ´ ¨ ¨ ¨ ´ pEi ´ ¨ ¨ ¨ ´ E4 where the hat means that Ei does no appear
in the expression of Di. Note that Di is nef, and since Dn

i ą 0 it is also big. Therefore, Di is semi-ample and

big. Now, consider a curve rC Ă X

rC „ α1,2pl ´ e1 ´ e2q ` ¨ ¨ ¨ ` α4,5pl ´ e4 ´ e5q ` β rC1,...,5 ` γ1e1 ` ¨ ¨ ¨ ` γ5e5

where rC1,...,5 „ 2l ´ e1 ´ ¨ ¨ ¨ ´ e5. Assume that Di ¨ rC “ γ1 ` ¨ ¨ ¨ ` γ5 “ 0. Hence we may write

rC „ p2β ` α1,2 ` ¨ ¨ ¨ ` α4,5ql ´ pβ ` α1,2 ` ¨ ¨ ¨ ` α1,5qe1 ´ ¨ ¨ ¨ ´ pβ ` α4,5qe5

Since 2β ` α1,2 ` ¨ ¨ ¨ ` α4,5 ă β ` α1,2 ` ¨ ¨ ¨ ` α1,5 ` ¨ ¨ ¨ ` β ` α4,5 we conclude that rC Ă rΠ.

Then, a large enough multiple of Di induces a birational morphism fDi
: X Ñ Xi contracting rΠ onto a P1

contained in Xi, and whose exceptional locus is exactly rΠ, that is Excpfiq “ rΠ. Indeed, D
i| rΠ yields the fibration

rΠ Ñ P1 induced by the linear system of conics in Π through p1, . . . , ppi, . . . , p5.
Let fDi

: X Ñ Xi and fDj
: X Ñ Xj be the morphisms induced respectively by Di and Dj . From now on

we will assume that n ě 4 so that fDi
is a small contraction. Then ExcpfDi

q “ ExcpfDj
q “ rΠ. On the other

hand, Di and Dj give rise to two different flops

X´ X X`

Xi Xj

χ´

fDi

χ`

fDj

Therefore, X` and X´ correspond to two different chambers C` and C´ of the Mori chamber decomposition of
MovpXq. On the other hand, by Nakamaye’s theorem [Laz04, Theorem 10.3.5] the base locus of χ` is ExcpfDj

q
and the base locus of χ´ is ExcpfDi

q. These base loci are respectively the stable base loci of Di and Dj .

Finally, since ExcpfDi
q “ ExcpfDj

q “ rΠ we conclude that C´ Y C` is a unique chamber of the stable base
locus decomposition of MovpXq.

More generally, for i “ 1, . . . , 5 we get five different chambers, all of them adjacent to NefpXq, of the Mori
chamber decomposition of MovpXq whose union gives a single chamber of its stable base locus decomposition.

Furthermore, the stable base locus of a divisor in this chamber is exactly the surface rΠ.

Example 3.2. (Cox rings viewpoint) Let X be the toric variety with Cox ring RpXq :“ KrT1, . . . , T5s whose
grading matrix and irrelevant ideal are the following

Q “

„
1 0 ´2 2 ´1

0 1 ´1 1 ´1


JirrpXq “ xT1, T4y X xT1, T5y X xT3, T5y

The degrees of the generators are displayed in the following picture together with the semi-ample cone λA which
is the gray region
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w1

w2

w3

w4

w5

λA

The matrix Q defines the following exact sequence where the right hand side Z2 is identified with the divisor
class group of X

0 Ñ Z3 Ñ Z5 Q
ÝÑ Z2 Ñ 0

Denote by γ the positive quadrant of Q5. Since the Cox ring is a polynomial ring the F-faces are all the faces of
γ and the orbit cones are all their projections in Q2. It follows that the maximal GIT chambers of X are all the
2-dimensional cones generated by pairs of consecutive rays. Recall that λA is the GIT chamber corresponding
to the semi-ample cone, generated by w1, w5. The corresponding bunch of orbit cones is

ΦpλAq :“ torbit cones ω such that ω˝ Ě λ˝
Au

In particular the only orbit cone of Φ which contains w2 is the whole of Q2. Denote by λi,j the cone determined
by ωi and ωj, and observe that conepλA Yλ2,3q “ conepλA Yλ2,4q “ Q2. Thus, by Proposition 2.12, we conclude
that λsblpw2q “ λ2,3 Y λ2,4.

Example 3.3. (Fans viewpoint) Let v1 . . . , v5 P Z3 be a set of vectors which is Gale dual to the set w1, . . . , w5 P
Z2 in Example 3.2. We can assume v1 . . . , v5 to be the five columns of the following matrix

»
–
1 0 0 ´1 ´1

0 1 0 1 2

0 0 1 1 0

fi
fl

These vectors generate the one dimensional cones of a fan Σ whose cones are displayed in the following picture

v1 v2

v3 v4

v5

The toric variety X “ XpΣq is the same as the one previously defined in Example 3.2. The displayed fan
structure correspond to choosing the semi-ample chamber to be the GIT chamber λA of the previous picture.
The following are the fan structures of the toric varieties whose semi-ample cone is respectively conepw1, w4q
and conepw3, w5q.

v1 v2

v3 v4

v5 v1 v2

v3 v4

v5

Example 3.4. (Compactification) Let Y be the toric variety with Cox ring R :“ KrT1, . . . , T6s whose grading
matrix and irrelevant ideal are the following

Q “

»
–
0 2 2 0 1 1

0 3 1 1 0 1

1 0 2 0 2 1

fi
fl JirrpY q “xT1, T4y X xT1, T5y X xT3, T5y

X xT2, T3, T6y X xT2, T4, T6y

The toric variety Y is a completion of the variety X in Example 3.2 obtained by adding the vector p1,´4,´2q
to the primitive generators of the one dimensional cones of X . The maximal cones of Y have the following
indexes: r1, 2, 3s, r2, 3, 4s, r2, 4, 5s, r1, 2, 6s, r2, 5, 6s, r1, 3, 6s, r3, 4, 6s, r4, 5, 6s. The variety Y is Q-factorial, non-
Gorenstein, with 2KY Cartier. The effective cone of Y has 16 maximal GIT chambers, and the moving cone of



ON MORI CHAMBER AND STABLE BASE LOCUS DECOMPOSITIONS 11

Y has 3 maximal chambers. The columns of each of the following matrices generate a maximal GIT chamber
of the moving cone, where the first one corresponds to the semi-ample cone

A “

»
–
1 1 2 2

1 1 1 1

1 2 3 4

fi
fl M1 “

»
–
1 1 2 2

1 1 3 3

1 2 2 4

fi
fl M2 “

»
–
1 2 4 6

1 1 3 3

1 3 4 8

fi
fl

The columns of each of the following matrices generate a maximal GIT chamber of the effective cone of X .

C1 “

»
–
1 2 4

1 3 3

1 0 4

fi
fl C2 “

»
–
1 2 2

1 3 3

1 0 2

fi
fl

The stable base locus of a divisor which lies in the interior of either C1 or C2 is V pT2q. Thus the union of these
two chambers is a unique stable base locus chamber. On the other hand, if we denote by Xi the projective toric
variety whose semi-ample cone is given by Mi, then from the point of view of Xi the GIT chambers coincide
with the stable base locus chambers.

Example 3.5. Consider the toric variety Z “ ZpΛq with fan Λ Ă Q3 given in the following picture

v1

v2

v3 v4

v5

v6

One can take for instance v1, . . . , v6 to be the columns of the following matrix
»
–

´1 ´1 ´1 1 1 1

´1 0 1 ´1 0 1

1 1 1 1 1 1

fi
fl

Then Z is a non-complete Mori dream space 3-fold with Picard number three and with Cox ring generated by
six free variables with degrees given by the columns w1, . . . , w6 of the following matrix

»
–

1 ´2 1 0 0 0

1 ´1 0 ´1 1 0

2 ´2 0 ´1 0 1

fi
fl

The effective cone of Z is the whole of Q3, it has 14 maximal GIT chambers and six of them are in the movable
cone. Let us denote by Zj :“ Zpλjq, j “ 1, . . . , 6 the different models where Z “ Z1, and λj , j “ 1, . . . , 6 are
the corresponding GIT chambers. The related fans are the following

Λ1 Λ2

Λ4

Λ3

Λ5 Λ6
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and the possible flips are as follows

Z1 Z2

Z3

Z4

Z5 Z6η1

η2

η3

η4

η5

η6

In Z we have that λ2, λ3, λ4 are in distinct stable base locus chambers but λ5 and λ6 are inside the same stable
base locus chamber. More precisely, if wj P λ˝

j , j “ 1, . . . , 6 then the stable base loci are

Bpw1q “ H,Bpw2q “ l1,4,Bpw3q “ l1,4 Y l1,5,Bpw4q “ l1,4 Y l2,4,Bpw5q “ Bpw6q “ l1,4 Y l1,5 Y l2,4

where li,j is the curve in the intersection of the toric divisors Di, Dj corresponding to the vectors vi, vj in the
fan Λ.

Geometrically we see that the flip η6 has l2,5 as flipping curve, and l2,5 does not exist in Z1. Therefore, the
flipping curve in the last flip is not visible from the point of view of Z1.

Note that we can produce an example of a complete 3-fold W with Picard number four such that MCDpW q ‰
SBLDpW q taking

v8 “
´v1 ´ ¨ ¨ ¨ ´ v7

6
“ p0, 0,´1q

and including the relevant additional cones.

The following will be the leading example in the Section 5. Indeed, we will produce a complete Mori dream
space X of Picard rank two such that MCDpXq ‰ SBLDpXq.

Example 3.6. (Fundamental example) Let Z be the toric variety with Cox ring KrT1, . . . , T11s whose grading
matrix and irrelevant ideal are the following

Q “

„
1 1 2 2 2 2 1 0 0 0 0

0 0 1 1 1 1 2 1 1 1 1


JirrpZq “ xT1, T2y X xT3, . . . , T11y

Denote by wi P Z2 the degree of Ti. The following picture displays the degrees of the generators of the Cox ring
together with the three maximal GIT chambers of the moving cone, where the shaded one is the ample cone

w1, w2

w8, . . . , w11 w3, . . . , w6

w7

λ1

λ

λA

Let Z “ K11 be the spectrum of the Cox ring of Z and let X be the affine subvariety defined by

X “ tF “ G “ 0u Ă Z

where F,G are general polynomial of degree p2, 2q in the Ti. that is general linear combinations of the following
monomials

(3.7)

$
’’&
’’%

T 2
1 T

2
8 T 2

1 T
2
9 T 2

1 T
2
10 T 2

1 T
2
11 T 2

2 T
2
8 T 2

2 T
2
9 T 2

2 T
2
10 T 2

2 T
2
11;

T3T8 T3T9 T3T10 T3T11 T4T8 T4T9 T4T10 T4T11;

T5T8 T5T9 T5T10 T5T11 T6T8 T6T9 T6T10 T6T11;

T1T7 T2T7.

It is immediate to check that for F,G general enough X is irreducible and codimXpSingpXqq ě 2. Since a local

complete intersection is Cohen-Macaulay by Serre’s criterion on normality we get that X is a normal variety.

Let pZ : pZ Ñ Z be the characteristic space morphism of Z and let pX :“ X X pZ. The image of pX via pZ is
a subvariety X of Z. Since X is irreducible and normal, and X is a GIT quotient of X by a reductive group
[Bri10, Theorem 1.24 (vi)] yields that X is irreducible and normal as well. We claim that

pX “ Zariski closure of p´1

Z pX X Z 1q in pZ
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where Z 1 is the smooth locus of Z. Indeed Z 1 contains the open subset Z2 of Z obtained by removing the union
of all the toric subvarieties of the form pZpV pTi, Tjqq, for any pair of indexes i, j. Since the Zariski closure of

p´1

Z pX X Z2q in pZ equals pX the claim follows.

Observe that codimXpXz pXq ě 2. Thus if one can show that the pull-back ı˚ : ClpZq Ñ ClpXq, induced by
the inclusion, is an isomorphism then by [ADHL15, Corollary 4.1.1.5], it follows that the Cox ring of X is

RpXq “
KrT1, . . . , T11s

IpXq

Note that each of w1..6, w3..7 and w7..11 is an orbit cone of X. In particular, the three maximal chambers λ1, λ,
λA of the moving cone are GIT chambers. On the other hand, since w1,2,7 is not an orbit cone, it follows that
each orbit cone contains

tω : λA Ď ω and λ1 Ř ωu “ tω : λA Ď ω and λ Ř ωu

Then λ and λ1 are contained in the same SBL chamber. It remains to show that

ı˚ : ClpZq Ñ ClpXq

is an isomorphism. Note that the K˚ ˆ K˚ action on XzpV pT2q Y V pT8qq is trivial, so if we remove the images
of V pT2q Y V pT8q from X , the resulting variety is isomorphic to an affine space. Therefore, ClpXq is generated
by the classes of the images of the two irreducible divisors V pTiq X X, with i P t2, 8u, and ρpXq ď 2.

Note that crossing the wall corresponding to w1, w2 we get a morphism f : Z Ñ P1. Furthermore, X Ă Z

is not contained in any fiber of f , and hence f restricts to a surjective morphism f|X : X Ñ P1. This forces
ρpXq ě 2. Finally, we conclude that the images of V pT2q, V pT8q form a basis of ClpXq and ρpXq “ 2.

We finish the present section with two examples of toric complete varieties in which the Mori chamber and
stable base locus decomposition do not coincide even inside the movable cone.

Example 3.8. Let X be a toric variety with the following grading matrix

Q :“

»
–
2 0 1 3 1 3

3 2 2 1 1 2

3 1 1 3 3 0

fi
fl

This is a toric 3-fold whose Mori chamber and stable base locus decomposition do not coincide even inside
the movable cone. More precisely, its effective cone has 17 GIT chambers, of these 5 are inside the movable
cone. The picture below shows a section of the Mori chamber decomposition of EffpXq. The 5 inner chambers,
two triangles and three quadrilaterals, are the GIT chambers of the movable cone. There are five possible
models, the picture shows in black a chosen semi-ample cone, and in the corresponding model the two gray GIT
chambers C and C1 share the stable base locus.

If one chooses any of the other four models the situation is similar, the two GIT chambers opposite to the
chosen semi-ample cone inside the movable cone will have the same stable base locus.

Example 3.9. Let X be a toric variety with the following grading matrix

Q :“

»
–
1 1 0 0 0 0 1

0 0 1 1 0 0 1

0 0 0 0 1 1 1

fi
fl

This is a toric 4-fold whose Mori chamber and stable base locus decomposition do not coincide inside the
movable cone. More precisely, its effective cone has 3 GIT chambers, all of them inside the movable cone since
EffpXq “ MovpXq. The picture below shows a section of the Mori chamber decomposition of EffpXq. There are
three possible models, the picture shows in black a chosen semi-ample cone, and in the corresponding model
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the two gray GIT chambers C and C1 have the stable base locus. If one chooses any of the other two models the
situation is the same.

Remark 3.10. All the computations of this section have been implemented in Magma [BCP97] and Maple
[HK15] programs. For convenience of the reader we include, as ancillary files in the arXiv version of the paper,
the following files:

- Readme.txt, a text on how to use the remaining files;
- SBLib.m, the Magma library containing all the functions needed to verify our examples;
- Examples.txt, the examples.

For an optimized version, implemented in Maple and Singular, of some of the algorithms presented in this
library see [Kei12]. The library SBLib.m contains nine commands which we briefly describe here.

- Ffaces: computes the F-faces of an ideal I of a polynomial ring according to [ADHL15, Remark 3.1.1.11].
- Eff: computes the effective cone of a family of vectors in a rational vector space according to [ADHL15,

Definition 2.2.2.5]. It takes as input the grading matrix whose columns are the relevant vectors.
- Mov: computes the moving cone of a family of vectors in a rational vector space according to [ADHL15,

Definition 2.2.2.5]. It takes as input the grading matrix whose columns are the named vectors.
- OrbitCones: computes the orbit cones as projections of the F-faces according to [ADHL15, Proposition

3.1.1.10]. It takes as input a pair consisting of the set of F-faces together with the grading matrix.
- GitChamber: computes the GIT chamber defined by a class w according to [ADHL15, Definition 3.1.2.6].

It takes as input a pair consisting of the set of orbit cones together with a class w.
- GitFan: computes the GIT quasi-fan, that is the collection of all the git cones, of the set of orbit cones

according to [Kei12, Algorithm 8]. It takes as input a pair consisting of the set of orbit cones together with
a class w.

- BunchCones: computes a bunch of orbit cones defined by a GIT chamber λ according to [ADHL15, Example
3.1.3.6]. It takes as input a pair consisting of the set of orbit cones together with a class w in the relative
interior of λ.

- SameSbl: decides whether two classes w1, w2 have the same stable base locus according to Proposition 2.8.
It takes as input a triple consisting of a bunch of orbit cones together with the two classes w1 and w2.

- FindTriples: determines all the triples pλA, λ1, λ2q of GIT chambers such that λ1 and λ2 are contained in
the same stable base locus chamber of the variety whose semi-ample chamber is λA. It works according to
Proposition 2.8, and takes as input a triple consisting of the grading matrix, the set of orbit cones and the
GIT fan.

4. Smooth toric 3-folds of Picard rank three

In this section we prove Theorem 1.2. Let N be a finitely generated free abelian group, M :“ HompN,Zq,
NQ :“ N bZ Q, and let X :“ XpΣq be a smooth projective toric variety defined by a fan Σ Ď NQ. Since X is
projective Σ is the normal fan of the Riemann-Roch polytope ∆ Ď MQ of any ample divisor of X , in particular
each facet of ∆ corresponds to a one dimensional cone of Σ. Since X is smooth each maximal cone of X is
simplicial so that each vertex of ∆ has valence n :“ dimpXq.

When X is a threefold of Picard rank three the polytope ∆ has six facets and all its vertexes have valency
three. If we denote by pv, e, fq the vector consisting of the number of vertexes, edges and facets of ∆, then
the conditions f “ 6, 2e “ 3v and v ´ e ` f “ 2 give pv, e, fq “ p8, 12, 6q. According to the classification of
hexahedra there are only two possible topological types for ∆, displayed in the following pictures.
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1 2

3

5 4

6
1 2

3

5 4
6

Number the facets of each polytope from 1 to 6 and let Ci be the primitive generator of the inward normal
vector to the i-th facet. Any vertex is labeled by a triple pi, j, kq in such a way that

(4.0) detpCi, Cj , Ckq “ 1.

For the type I polytope the vertexes labels are: p1, 2, 3q, p2, 4, 3q, p1, 6, 2q, p1, 3, 5q, p4, 2, 6q, p1, 5, 6q, p3, 4, 5q,
p4, 6, 5q, while for the type II polytope the vertexes labels are: p1, 2, 3q, p1, 3, 5q, p1, 6, 2q, p2, 4, 3q, p1, 5, 6q,
p4, 2, 6q, p6, 5, 3q, p3, 4, 6q. Without loss of generality we can assume tC1, C2, C3u to be the canonical basis of
NQ » Q3. Thus the matrix whose columns are the primitive generators of the fan Σ and its orthogonal have
the form

P :“

»
–
1 0 0 a1 a2 a3
0 1 0 b1 b2 b3
0 0 1 c1 c2 c3

fi
fl Q :“

»
–

´a1 ´b1 ´c1 1 0 0

´a2 ´b2 ´c2 0 1 0

´a3 ´b3 ´c3 0 0 1

fi
fl

Applying conditions (4.0) to all type I triples gives the following equations a1 “ b2 “ c3 “ ´1, a3c1 “
b3c2 “ a2b1 “ 0, a2b3c1 ` a3b1c2 “ 0. These equations cut out the union of six three-dimensional affine spaces
which are in a unique orbit of the S3 action which permutes the coordinates. One of these spaces is given by
a1 “ b2 “ c3 “ ´1, b1 “ c1 “ c2 “ 0. The corresponding Q matrix is

Q1 :“

»
–

1 0 0 1 0 0

´a2 1 0 0 1 0

´a3 ´b3 1 0 0 1

fi
fl

Any integer vector pa2, a3, b3q gives an example of a smooth toric threefold whose defining fan is of type I.
Applying conditions (4.0) to all the type II triples gives the following equations a1 “ b2 “ c3 “ ´1,

b3c2 “ a3c1 “ 0, a2b3 ` a3 ` 1 “ 0, b3 ` a3b1 ` 1 “ 0. These equations cut out the union of three irreducible
subvarieties of dimension two. Two of these are the affine spaces a1 “ b2 “ b3 “ c3 “ ´1, a3 “ c2 “ 0, a2 “ 1

and a1 “ b2 “ a3 “ c3 “ ´1, b3 “ c1 “ 0, b1 “ 1. The Q matrix for points on the first affine space is

Q2 :“

»
–

1 ´b1 ´c1 1 0 0

´1 1 0 0 1 0

0 1 1 0 0 1

fi
fl

The second affine space gives a similar Q matrix. The third variety has equations a1 “ b2 “ c3 “ ´1,
c1 “ c2 “ 0, a2b3 ` a3 ` 1 “ 0, a3b1 ` b3 ` 1 “ 0. Considering only integer points this third variety is the union
of a point and two one parameter families corresponding to the following grading matrices

Q3 :“

»
–

1 1 0 1 0 0

´1 1 0 0 1 0

0 1 1 0 0 1

fi
fl , Q4 :“

»
–

1 ´1 0 1 0 0

´a2 1 0 0 1 0

1 0 1 0 0 1

fi
fl , Q5 :“

»
–

1 0 0 1 0 0

´a2 1 0 0 1 0

´a2 ` 1 1 1 0 0 1

fi
fl .

Note now that the case Q3 is a sub-case of Q2 and the case Q5 is a sub-case of Q1. Therefore it is enough
to analyze Q1, Q2 and Q4. We will call A,B, . . . , F the columns of Q. Note that in all cases D “ p1, 0, 0q, E “
p0, 1, 0q and F “ p0, 0, 1q.

In the case of Q1 we have C “ F and the point B moves in the half line from F to E. There are three
possibilities b3 ă 0, b3 “ 0, b3 ą 0. If b3 “ 0 there is nine possibilities for the point A according to a2 and a3
being negative, zero or positive. If b3 ă 0 we now have four more possibilities depending if the point A is above
or below the line DF, therefore 13 possibilities. For b3 ą 0 we have 13 possibilities as well. Summing up we
have 35 possibilities. Choosing a particular value of b2, a2, a3 for each of the 35 cases and computing the Mori
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chamber and the stable base locus decomposition one gets exactly two cases where the Mori chamber and stable
base locus decomposition do not coincide, corresponding to the following matrices

G1 :“

»
–
1 0 0 1 0 0

α 1 0 0 1 0

β 0 1 0 0 1

fi
fl , α, β ą 0, G2 :“

»
–
1 0 0 1 0 0

α 1 0 0 1 0

β γ 1 0 0 1

fi
fl , α, β, γ ă 0

Now, consider the case Q2. In this case A is fixed, B moves in the line connecting p0, 1, 1q to D and C moves
in the line DF. If c1 “ 0 then C “ D and B has three possibilities according to sign of b1. If c1 ă 0 there are
five possibilities for b1 depending on the sign and on which of the inequalities b1 ě c1 and b1 ă c1 holds. For
c1 ą 0 there are five possibilities as well but now what matters is the sign of b1 and if it is greater than c1 ` 1

or not. Therefore there are 13 possibilities to check. Computing explicitly the decompositions we get 4 new
possible types of varieties whose Mori chamber and stable base locus decompositions do not coincide:

G3 :“

»
–

1 0 γ 1 0 0

´1 1 0 0 1 0

0 1 1 0 0 1

fi
fl , γ ą 0, G4 :“

»
–

1 β γ 1 0 0

´1 1 0 0 1 0

0 1 1 0 0 1

fi
fl , β ą 0 ą γ

G5 :“

»
–

1 β γ 1 0 0

´1 1 0 0 1 0

0 1 1 0 0 1

fi
fl , β ă 0 ă γ, G6 :“

»
–

1 β γ 1 0 0

´1 1 0 0 1 0

0 1 1 0 0 1

fi
fl , β ă γ ´ 1 ă ´1

Finally, doing the same with Q4 we have to consider four cases: a2 ă 0 (A inside the triangle DEF ), a2 “ 0

(A in the midpoint of CF ), a2 “ 1 (A in the line BF ), and a2 ą 2 (A below the line BF ). Doing this we get a
single new type:

G7 :“

»
–
1 ´1 0 1 0 0

1 1 0 0 1 0

1 0 1 0 0 1

fi
fl

This proves Theorem 1.2.

5. Mori dream spaces of Picard rank two

Let X be a Mori dream space with divisor class group ClpXq of rank two. Since X is a projective variety its
effective cone is pointed. Moreover ClpXq has rank two so that we can fix a total order on the classes in the
effective cone w ď w1 if w is on the left of w1. Given two convex cones λ, λ1 contained in the effective cone we
will write

λ ď λ1 if w ď w1 for any w P λ and w1 P λ

Denote by tf1, . . . , fru a minimal set of homogeneous generators for the Cox ring RpXq of X , and let wi “ degpfiq
for any i.

Proposition 5.1. Let X be a projective Q-factorial toric variety with Picard rank two. Then the Mori chamber
and the stable base locus decompositions of EffpXq coincide.

Proof. Let λA be the semi-ample cone of X and let λ1, λ2 be two distinct maximal GIT chambers of X .
According to (2.10) it suffices to show that there exists an orbit cone of the bunch which contains one of

λA Y λ1, λA Y λ2 but not the other. Since X is complete the effective cone is pointed, so that, since the Picard
rank is two, one can order the GIT chambers of X .

Assuming λ1 ď λ2, we have three possibilities: either λ1 ď λA ď λ2, or λA ď λ1 ď λ2, or λ1 ď λ2 ď λA. Since
X is toric each pair of degrees of generators of the Cox ring span an orbit cone. Thus in the first two cases we
can find an orbit cone which contains λA Y λ1 but not λA Y λ2, while in the last case we can find an orbit cone
which contains λA Y λ2 but not λA Y λ1. �

The following is our first simple criterion implying the equality of the two chamber decompositions for a
Q-factorial Mori dream space of Picard rank two.

Proposition 5.2. Let X be a projective Q-factorial Mori dream space with Picard rank two. If all the generators
of RpXq appear in the walls of the stable base locus decomposition of EffpXq then the Mori chamber and the
stable base locus decompositions of EffpXq coincide.
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Proof. By (2.7) the Mori chamber decomposition is a subdivision of EffpXq whose walls are given by some of
the generators of RpXq, and it is a refinement of the stable base locus decomposition. Since, by hypothesis all
the generators appear as walls of the stable base locus decomposition such a refinement must be trivial. �

Now, we develop some technical results in order to describe the semi-stable loci corresponding to the GIT
chambers of the Mori chamber decomposition of a Mori dream space of Picard rank two.

Lemma 5.3. Let X be a Mori dream space with Picard rank two, λ Ď ClQpXq a maximal GIT chamber of X,

and X
ss

pλq the corresponding subset of semi-stable points of X. Then the following holds

XzX
ss

pλq “ V pfi : wi ď λq Y V pfi : λ ď wiq

Proof. By [ADHL15, Theorem 3.1.2.8] we have X
ss

pλq “ X
ss

pwq for any w P λ˝, where the second semi-stable
locus is the complement of the zero set of all the homogeneous sections of the Cox ring whose degree is a positive
multiple of w. If we choose such a class w P λ˝ so that w ă wi for any wi P λ˝ then each monomial in f1, . . . , fr
of degree nw must contain at least one fi with wi ď λ. Thus the inclusion

V pfi : wi ď λq Ď XzX
ss

pλq

follows. The analogous inclusion for V pfi : λ ď wiq can be proved in a similar way.
To prove the opposite inclusion observe that if x P X is a point which does not belong to the union V pfi :

wi ď λq Y V pfi : λ ď wiq, then there exist two sections fi, with wi ď λ, and fj, with λ ď wj , each of which
does not vanish on x.

Take non negative a, b P Z such that awi ` bwj P λ˝. Since fa
i f

b
j is a homogeneous element of the Cox ring

of degree awi ` bwj P λ˝ which does not vanish on x, the point x is in X
ss

pλq. �

Lemma 5.4. Let X be a Mori dream space with Picard rank two and let λ, λ1 Ď ClQpXq be two maximal distinct
GIT chambers of X with λ ď λ1. Then the following inclusion is strict

V pfi : wi ď λ1q Ř V pfi : wi ď λq

Proof. Assume that the equality V pfi : wi ď λ1q “ V pfi : wi ď λq holds. By hypothesis the inclusion

V pfi : λ ď wiq Ď V pfi : λ1 ď wiq holds. Thus by Lemma 5.3 there would be an inclusion X
ss

pλ1q Ď X
ss

pλq.
By [ADHL15, Theorem 3.1.2.8] the latter inclusion would imply λ Ď λ1, a contradiction. �

Recall that a Mori dream space X is a good quotient of its characteristic space pX “ X
ss

pλAq, and denote

by pλA
: pX Ñ X the good quotient map. The following simple characterization of stable base loci will be

fundamental for the rest of the paper.

Lemma 5.5. If λ ď λA then the stable base locus of a class w P λ is

(5.6) Bpwq “ pλA
p pXzX

ss
pλqq “ pλA

p pX X V pfi : wi ď λqq

If λ ě λA then the stable base locus of a class w P λ is

(5.7) Bpwq “ pλA
p pXzX

ss
pλqq “ pλA

p pX X V pfi : wi ě λqq

Proof. In order to prove (5.6) just note that the first equality holds by definition while the second equality
is due to Lemma 5.3 and the fact that λ ď λA. Clearly (5.7) can be proved using a completely analogous
argument. �

The following is the main technical tool of the paper.

Theorem 5.8. Let X “ XpλAq be a Q-factorial Mori dream space with Picard rank two corresponding to the
maximal chamber λA of the Mori chamber decomposition of EffpXq. If for any λ1 ď λ ď λA we have

(5.9) V pfi : wi ď λqzV pfi : wi ě λAq Ř V pfi : wi ď λ1qzV pfi : wi ě λAq

and for any λA ď λ ď λ1 we have

(5.10) V pfi : wi ě λqzV pfi : wi ď λAq Ř V pfi : wi ě λ1qzV pfi : wi ď λAq

then the Mori chamber and the stable base locus decompositions of EffpXq coincide.
Furthermore, if for any λ ď λA ď λ1 we have that

V pfi : wi ď λqzpV pfi : wi ď λAq Y V pfi : wi ě λAqq
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is different from

V pfi : wi ě λ1qzpV pfi : wi ď λAq Y V pfi : wi ě λAqq

then the stable base locus chambers of EffpXq are convex.

Proof. Let λ be a maximal non-ample GIT chamber of X . Assume that λ ď λA, where λA is the ample cone
of X . By (5.6) in Lemma 5.5 the stable base locus of a class w P λ is

Bpwq “ pλA
p pXzX

ss
pλqq “ pλA

p pX X V pfi : wi ď λqq

Now let λ1 ď λA be any maximal GIT chamber distinct from λ and λA. Without loss of generality we can
assume that λ1 ď λ then by Lemma 5.4 we deduce the following

V pfi : wi ď λAq Ř V pfi : wi ď λq Ř V pfi : wi ď λ1q

V pfi : wi ě λAq Ś V pfi : wi ě λq Ś V pfi : wi ě λ1q

where all the inclusions are strict. Taking the intersection with pX is equivalent to remove from V pfi : wi ď
λq Ĺ V pfi : wi ď λ1q the common subset V pfi : wi ď λAq and their intersection with V pfi : wi ě λAq. So
hypothesis (5.9) yields that

pX X V pfi : wi ď λq ‰ pX X V pfi : wi ď λ1q

Since X is Q-factorial, the good quotient pλA
: pX Ñ X is geometric [ADHL15, Corollary 1.6.2.7]. It follows

that the images of the above sets via pλA
remain distinct in X and thus that Bpwq ‰ Bpw1q for any w P λ˝ and

w1 P λ1˝.
Now, assume that λA ď λ. Then (5.7) in Lemma 5.5 yields that the stable base locus of a class w P λ is

Bpwq “ pλA
p pXzX

ss
pλqq “ pλA

p pX X V pfi : wi ě λqq

In this case if λ1 is a maximal chamber distinct from λ such that λA ď λ ď λ1 Lemma 5.3 yields the following
strict inclusions

V pfi : wi ě λAq Ř V pfi : wi ě λq Ř V pfi : wi ě λ1q

V pfi : wi ď λAq Ś V pfi : wi ď λq Ś V pfi : wi ď λ1q

To conclude it is enough to argue as in the previous case using (5.10) instead of (5.9).
Summing up we showed that any pair of distinct GIT chambers lying on the same side of λA gives two

different stable base locus chambers. Therefore, the Mori chamber decomposition of EffpXq coincide with its
stable base locus decomposition.

Finally, an analogous argument shows that if λ ď λA ď λ1 and our last hypothesis holds then for any w P λ

and w1 P λ1 we have Bpwq ‰ Bpwq, and hence the stable base locus chambers of EffpXq are convex. �

Remark 5.11. Let us consider the Mori dream space X in Example 3.6. Note that (3.7) yields

V pfi : wi ě λAq “ tT1 “ T2 “ rF “ rG “ 0u

where rF , rG are general linear combinations of the following monomials
"

T3T8 T3T9 T3T10 T3T11 T4T8 T4T9 T4T10 T4T11;

T5T8 T5T9 T5T10 T5T11 T6T8 T6T9 T6T10 T6T11;

V pfi : wi ď λq “ tT7 “ T8 “ T9 “ T10 “ T11 “ 0u

V pfi : wi ď λ1q “ tT1 “ T2 “ T8 “ T9 “ T10 “ T11 “ 0u Y tT7 “ T8 “ T9 “ T10 “ T11 “ 0u

and V pfi : wi ě λAq Ą tT1 “ T2 “ T8 “ T9 “ T10 “ T11 “ 0u contains a component of the set V pfi : wi ď λ1q.

In what follows we work out some interesting consequences of Theorem 5.8.

Corollary 5.13. Let X “ XpλAq be a Q-factorial Mori dream space with Picard rank two corresponding to
the maximal chamber λA of the Mori chamber decomposition of EffpXq. If for any maximal chamber λ we
have that V pfi : wi ď λq and V pfi : wi ě λq are irreducible then the Mori chamber and the stable base locus
decompositions of EffpXq coincide.
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Proof. Without loss of generality we may assume that λ1 ď λ ď λA. Since V pfi : wi ď λ1q is irreducible either
V pfi : wi ě λAq Ě V pfi : wi ď λ1q or V pfi : wi ě λAq X V pfi : wi ď λ1q is a closed subset of V pfi : wi ď λ1q.

Assume that V pfi : wi ě λAq Ě V pfi : wi ď λ1q. Then since V pfi : wi ě λ1q Ď V pfi : wi ě λAq we
get that XsspλAq Ď Xsspλ1q, and [ADHL15, Theorem 3.1.2.8] yields that λ1 Ď λA, a contradiction. Therefore,
V pfi : wi ě λAq intersects V pfi : wi ď λ1q in a closed subset, and to conclude it is enough to apply Theorem
5.8. �

Now, we are ready to prove the main result of the paper.

Theorem 5.14. Let X be a Q-factorial Mori dream space with Picard rank two, tf1, . . . , fru a minimal set of
homogeneous generators for the Cox ring RpXq, wi :“ degpfiq, and λA be the ample chamber of X. Denote by
c the codimension of X into its canonical toric embedding [ADHL15, Section 3.2.5]. Define

h` :“ #tfi : wi ě λAu and h´ :“ #tfi : wi ď λAu

If h´ ą c and h` ą c, then the Mori chamber and the stable base locus decomposition of EffpXq coincide.

Proof. Consider pλA
: pX Ñ X , let X be the total space of X , and Z – Ar be the affine space with coordinates

given by the fi. Let λ1, λ be two chambers of the Mori chamber decomposition of EffpXq as in the following
picture

λ1

λ

λA

Recall that by (5.6) in Lemma 5.5 the stable base loci of classes w P λ, w1 P λ1 are given respectively by

Bpwq “ pλA
p pXzX

ss
pλqq “ pλA

p pX X V pfi : wi ď λqq

Bpw1q “ pλA
p pXzX

ss
pλ1qq “ pλA

p pX X V pfi : wi ď λ1qq

and the non semi-stable locus of λA is

V pfi : wi ď λAq Y V pfi : wi ě λAq

Now, X Ă Ar has dimension dimpXq ` 2, and hence any irreducible component of the intersection X X V pfi :

wi ď λ1q has dimension greater than or equal to dimpXq ` 2 ´ h1, where h1 “ #tfi : wi ď λ1u. Assume that
an irreducible component of X X V pfi : wi ď λ1q is contained in X X V pfi : wi ě λAq. Then such component
must be contained in

V pfi, fj : wi ď λ1, wj ě λAq

which has dimension r ´ h1 ´ h`. This forces h` ď c, a contradiction with our hypothesis. Now, to conclude
that λ, λ1 are two different stable base locus chambers it is enough to recall that Lemma 5.4 yields V pfi : wi ď
λq Š V pfi : wi ď λ1q.

When λA ď λ ď λ1 we argue in a completely analogous way, and then to conclude it is enough to apply
Theorem 5.8. �

The following is the first immediate consequence of Theorem 5.14.

Corollary 5.15. Let Z be a projective normal Q-factorial toric variety with rkpClpZqq “ 2, and X Ď Z a
projective normal Q-factorial Mori dream hypersurface such that ı˚ : ClpZq Ñ ClpXq is an isomorphism. Then
the Mori chamber and the stable base locus decompositions of both EffpZq and EffpXq coincide.

Proof. For a toric variety the claim follows from Proposition 5.1 and it is also an immediate consequence of
Theorem 5.14 with c “ 0. In general, following the notation in the proof of Theorem 5.14, there are always
at least two generators in the sets tfi : wi ě λAu, tfi : wi ď λAu otherwise λA would be a chamber of
EffpXqzMovpXq. Since c “ codimZpXq “ 1 we conclude by Theorem 5.14. �
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Remark 5.16. Theorem 5.14 is sharp. Indeed, the Mori dream space in Example 3.6 has three Mori chamber
but just two stable base locus chambers. In this example h` “ c “ 2.

Remark 5.17. An intrinsic quadric is a normal Q-factorial projective Mori dream space with Cox ring defined
by a single quadratic relation. Smooth intrinsic quadrics with small Picard rank have been studied recently in
[FH18]. By Corollary 5.15 the Mori chamber and the stable base locus decomposition of the effective cone of
an intrinsic quadric of Picard rank two coincide.

5.17. Picard rank two varieties with a torus action of complexity one. Recall that a variety with a
torus action of complexity one is a normal complete algebraic variety X with an effective action of a torus T

such that the biggest T -orbits are of codimension one in X .

Proposition 5.18. Let X be smooth rational projective variety of Picard rank two that admits a torus action
of complexity one. Then the Mori chamber and the stable base locus decomposition of EffpXq coincide.

Proof. By [FHN16, Theorem 1.1] any smooth rational projective variety of Picard rank two with a torus action
of complexity one, with just one exception, is a Mori dream hypersurface in its canonical toric embedding.
Therefore, with the exception of the variety No. 13 in the statement of [FHN16, Theorem 1.1] the claim follows
directly from Corollary 5.15.

On the hand, the Cox ring of the exceptional variety X has eight generators T1, . . . , T8, with degpT1q “
degpT3q “ degpT5q “ degpT7q, and degpT2q “ degpT4q “ degpT6q “ degpT8q. Therefore, both the Mori chamber
and the stable base locus decomposition of EffpXq consist of a single chamber which is indeed the nef cone of
X . �

In what follows we apply the techniques developed in this section to compute the stable base locus decom-
position which by Proposition 5.18 coincide with the Mori chamber decomposition, of the effective cones of the
varieties in [FHN16, Theorem 1.1].

Example 5.19. (No. 6 in [FHN16, Theorem 1.1]) In this case X is a variety of dimension m` 3 with Cox ring
given by

RpXq –
krT1, . . . , T6, S1, . . . , Sms

pT1T2 ` T3T4 ` T 2
5
T6q

with m ě 1, and grading matrix
ˆ

0 2c ` 1 a b c 1 1 . . . 1

1 1 1 1 1 0 0 . . . 0

˙

with a, b, c ě 0, a ă b and a ` b “ 2c ` 1. Here we develop the case 0 ă a ă c, when a “ 0 or a “ c a similar
argument will work. Therefore, MCDpXq is a possibly trivial coarsening of the following decomposition

w1 w3 w5 w4 w2

S1, . . . , Sm

λ1

λ2λ3λ4λ5

where λ1 “ λA is the ample cone of X . Note that (5.6) in Lemma 5.5 yields

Bpwq “ pλA
p pX X V pfi : wi ď λ2qq “ pλA

p pX X tT4 “ T5 “ T3 “ T1 “ 0uq if w P λ2;

Bpwq “ pλA
p pX X V pfi : wi ď λ3qq “ pλA

p pX X tT5 “ T3 “ T1 “ 0uq if w P λ3;

Bpwq “ pλA
p pX X V pfi : wi ď λ4qq “ pλA

p pX X tT3 “ T1 “ T 2
5 T6 “ 0uq if w P λ4;

Bpwq “ pλA
p pX X V pfi : wi ď λ5qq “ pλA

p pX X tT1 “ T3T4 ` T 2
5 T6 “ 0uq if w P λ5.

Therefore, MCDpXq “ SBLDpXq “ tλA, λ2, λ3, λ4, λ5u.

Example 5.20. (No. 8 in [FHN16, Theorem 1.1]) In this case X is a variety of dimension m` 3 with Cox ring
given by

RpXq –
krT1, . . . , T6, S1, . . . , Sms

pT1T2 ` T3T4 ` T5T6q
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with m ě 2, and grading matrix ˆ
0 0 0 0 0 0 1 1 . . . 1

1 1 1 1 1 1 0 a2 . . . am

˙

with 0 ď a2 ď ¨ ¨ ¨ ď am and am ą 0. We develop the case 0 ă a2 ă ¨ ¨ ¨ ă am, the same argument will work in
the remaining cases as well. Therefore, MCDpXq is a possibly trivial coarsening of the following decomposition

w7

w8

wm`5

wm`6w1, . . . , w6

λ1

λm´1λm

where λm “ λA is the ample cone of X . Note that (5.7) in Lemma 5.5 yields

Bpwq “ pλA
p pX X V pfi : wi ě λjqq “ pλA

p pX X tSj “ ¨ ¨ ¨ “ S1 “ T1T2 ` T3T4 ` T5T6 “ 0uq

if w P λj , for j “ 1, . . . ,m ´ 1. Therefore, MCDpXq “ SBLDpXq “ tλA, λm´1, . . . , λ1u.

For all the other varieties listed in [FHN16, Theorem 1.1], with the exception of the varieties No. 3 and
No. 12 for generic parameters, arguing similarly we get that the Mori chamber decomposition of the variety
coincide with the one of the ambient toric variety which is given by the corresponding grading matrix in [FHN16,
Theorem 1.1]. In the following we study the two exceptional cases.

Example 5.21. (No. 3 in [FHN16, Theorem 1.1]) In this case X is a 3-fold with Cox ring given by

RpXq –
krT1, . . . , T6s

pT1T2T
2
3

` T4T5 ` T 2
6

q

with m ě 2, and grading matrix ˆ
0 0 1 1 1 1

1 1 0 2 ´ a a 1

˙

with a ě 1. Therefore, in the case a ě 3 the MCDpXq is a possibly trivial coarsening of the following
decomposition

w3

w6

w5

w4

w1, w2

λ1

λ2

λ3λ4

where λ4 “ λA is the ample cone of X . Note that (5.7) in Lemma 5.5 yields

Bpwq “ pλA
p pX X V pfi : wi ě λ3qq “ pλA

p pX X tT6 “ T3 “ T4 “ 0uq if w P λ3;

Bpwq “ pλA
p pX X V pfi : wi ě λ2qq “ pλA

p pX X tT6 “ T3 “ T4 “ 0uq if w P λ2;

Bpwq “ pλA
p pX X V pfi : wi ě λ1qq “ pλA

p pX X tT4 “ 0uq if w P λ1.

Therefore, MCDpXq “ SBLDpXq “ tλA, λ2 Y λ3, λ1u.
In the case a “ 2, MCDpXq is a possibly trivial coarsening of the following decomposition

w3, w4

w6

w5w1, w2

λ2

λ3

λ4
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where λ4 “ λA is the ample cone of X . Note that (5.7) in Lemma 5.5 yields

Bpwq “ pλA
p pX X V pfi : wi ě λ2qq “ pλA

p pX X tT6 “ T3 “ T4 “ 0uq if w P λ2;

Bpwq “ pλA
p pX X V pfi : wi ě λ3qq “ pλA

p pX X tT6 “ T3 “ T4 “ 0uq if w P λ3.

Therefore, MCDpXq “ SBLDpXq “ tλA, λ2 Y λ3u.
In the case a “ 1, MCDpXq is a possibly trivial coarsening of the following decomposition

w3

w4, w5, w6w1, w2

λ2

λ4

where λ4 “ λA is the ample cone of X . Now (5.7) in Lemma 5.5 yields

Bpwq “ pλA
p pX X V pfi : wi ě λ2qq “ pλA

p pX X tT3 “ 0uq if w P λ2.

Therefore, MCDpXq “ SBLDpXq “ tλA, λ2u.

Example 5.22. (No. 12 in [FHN16, Theorem 1.1]) In this case X is a variety of dimension m ` 2 with Cox
ring given by

RpXq –
krT1, . . . , T5, S1, . . . , Sms

pT1T2 ` T3T4 ` T 2
5

q

with m ě 2, and grading matrix ˆ
1 1 1 1 1 0 . . . 0

0 2c a b c 1 . . . 1

˙

with 0 ď a ď c ď b and a ` b “ 2c. Therefore, in the case 0 ă a ă c ă b, MCDpXq is a possibly trivial
coarsening of the following decomposition

w1

w3

w5

w4

w2wm`1, . . . , wm`5

λ1

λ2

λ3

λ4λ5

where λ5 “ λA is the ample cone of X . Note that (5.7) in Lemma 5.5 yields

Bpwq “ pλA
p pX X V pfi : wi ě λ4qq “ pλA

p pX X tT4 “ T5 “ T3 “ T1 “ 0uq if w P λ4;

Bpwq “ pλA
p pX X V pfi : wi ě λ3qq “ pλA

p pX X tT5 “ T3 “ T1 “ 0uq if w P λ3;

Bpwq “ pλA
p pX X V pfi : wi ě λ2qq “ pλA

p pX X tT3 “ T1 “ T5 “ 0uq if w P λ2.

Bpwq “ pλA
p pX X V pfi : wi ě λ1qq “ pλA

p pX X tT1 “ T3T4 ` T 2
5 “ 0uq if w P λ1.

Therefore, MCDpXq “ SBLDpXq “ tλA, λ4, λ2 Y λ3, λ1u.
If there is an equality in any of the inequalities 0 ď a ď c ď b, then some wj coincide and the corresponding

chambers collapse as in Example 5.21. For instance, if a “ 0 then w1 “ w3 and the chamber λ1 does not exist.

6. Grassmannians blow-ups

Let Gpr, nq be the Grassmannian parametrizing r-planes in Pn, and Gpr, nqk the blow-up of Pn at k general
points. These blow-ups have been studied in [MR18]. In particular the stable base locus decomposition of
EffpGpr, nq1q has been computed in [MR18, Theorem 1.3].

In this section we will compute the Cox ring of Gpr, nq1 by exploiting its spherical nature, and as a consequence
of Proposition 5.2 we will answer positively to [MR18, Question 6.9] which ask whether the decomposition given
in [MR18, Theorem 1.3] is the Mori chamber decomposition of EffpGpr, nq1q.
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Definition 6.1. A spherical variety is a normal variety X together with an action of a connected reductive
affine algebraic group G , a Borel subgroup B Ď G , and a base point x0 P X such that the B-orbit of x0 in X

is a dense open subset of X .
Let pX,G ,B, x0q be a spherical variety. We distinguish two types of B-invariant prime divisors: a boundary

divisor of X is a G -invariant prime divisor on X , a color of X is a B-invariant prime divisor that is not
G -invariant.

For instance, any toric variety is a spherical variety with B “ G equal to the torus. For a toric variety there
are no colors, and the boundary divisors are the usual toric invariant divisors.

Set Λ :“ tI Ă t0, . . . , nu, |I| “ r ` 1u and N :“ |Λ| ` 1. Define the Hamming distance on Λ as

dpI, Jq “ |I| ´ |I X J | “ |J | ´ |I X J |

for each I, J P Λ. Note that, with respect to this distance, the diameter of Λ is r ` 1. We consider the
Grassmannian Gpr, nq in the usual Plücker embedding Gpr, nq Ă PN .

For each pair I “ ti0 ă ¨ ¨ ¨ ă ir´1u, J “ tj0 ă ¨ ¨ ¨ ă jr`1u Ă t0, . . . , nu with |I| “ r, |J | “ r ` 2, define a
quadratic polynomial

(6.2) FIJ “
r`1ÿ

t“0

p´1qtpi0...ir´1jtpj1... pjt...jr`1

Then the ideal of KrpI , I P Λs generated by the FIJ is the ideal defining Gpr, nq Ă PN [Sha13, Section I.4].
We denote by Gpr, nq1 the blow-up of Gpr, nq at p “ xe0, . . . , ery, where te0, . . . , enu is the canonical basis of
Kn`1, by H the pull-back to Gpr, nq1 of the hyperplane section of PN , and by E the exceptional divisor of the
blow-up.

Proposition 6.3. In the polynomial ring KrS, TI , I P Λs consider the ideal J generated by the Plücker relations
(6.2) in the coordinates TI . Then

RpGpr, nq1q –
KrS, TI, I P Λs

J

and the degree of the variable TI in ClpGpr, nq1q “ ZrHs ` ZrEs is p1,´dpI, t0, . . . , ruqq, where degpSq “ p0, 1q.

Proof. By [MR18, Proposition 4.1] under the action of the reductive group

G “

"ˆ
A 0

0 B

˙
, A P GLr`1, B P GLn´r | detpAqdetpBq “ 1

*
Ă SLn`1

the blow-up Gpr, nq1 is a spherical variety. We consider the Borel subgroup B Ă G of matrices with upper
triangular blocks. Consider the divisors D0, . . . , Dr`1 in Gpr, nq defined as Dj :“ trΣs P Gpr, nq : ΣXΓj ‰ ∅u,
where $

’’’’’’&
’’’’’’%

Γ0 “ xer`1, . . . , eny ;

Γ1 “ xe0, er`1, . . . , en´1y ;
...

Γr`1 “ xe0, . . . , er, er`1, . . . , en´r´1y ;

Γ1 “ xe0, . . . , ery .

Pulling-back these divisors via the blow-up map we obtain divisors in Gpr, nq1. For sake of simplicity we will
use the same notation for divisors in Gpr, nq and their pull-backs in Gpr, nq1.

Now, note that G preserves the dimension of the intersection of a given subspace of Pn with Γ0 and with Γ1.
Therefore G ¨ D0 “ D0 and G ¨ E “ E that is, D0 and E are boundary divisors. Note also that each Dj is a
B-invariant but not a G -invariant prime divisor, and therefore D1, . . . , Dr`1 are colors.

In order to determine the G -orbit of D1, . . . , Dr`1 we have to describe these divisors explicitly as zeros of
polynomials in the Plücker coordinates.

In Gpr, nq the divisor D0 is given by D0 “ V pp0,...,rq. Indeed, if q P D0 then q “ rΣs with Σ X Γ0 ‰ ∅ and
therefore it can be represented with a matrix whose first row is of the form p0, . . . , 0, ar`1, . . . , anq.

This implies that p0...rpqq “ 0. Conversely, if p0...rpqq “ 0 then the most left pr ` 1q ˆ pr ` 1q sub-matrix
of any matrix representing q has zero determinant, therefore there is another representation of q such that the
first row has the following form p0, . . . , 0, ar`1, . . . , anq, and we conclude that q P D0.
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Similarly, setting Ij “ te0, . . . , ej´1, er`1, . . . , en´ju for j “ 0, . . . , r ` 1, we have Dj “ V ppIj q. Note that
dpIj , I0q “ j for any j. More generally, one can consider the prime divisor DI :“ V ppIq for any I P Λ. We claim
that the linear span of the orbit G ¨ Dj is given by

(6.4) lin pG ¨ Djq “ xtDJ ; dpJ, I0q “ juy , j “ 0, . . . , r ` 1

Note that given I, I 1 P Λ with distance one and such that the non shared indexes, say i P IzI 1, i1 P I 1zI are
in t0, . . . , ru we can find a g P G such that gpeiq “ ei1 and gpejq “ ej for j ‰ i, i1. The same holds if the non
shared indexes are in tr ` 1, . . . , nu, and we get that

tDJ ; dpJ, I0q “ ju Ă G ¨ Dj , j “ 0, . . . , r ` 1

Since the DJ such that dpJ, I0q “ j, j “ 0, . . . , r ` 1, give a generating set of H0pGpr, nq,OGpr,nqp1qq we get
(6.4). Now, let S and TI be the canonical sections associated respectively to E and DI . By [ADHL15, Theorem
4.5.4.6] S, TI , I P Λ are generators of RpGpr, nq1q. Furthermore, by [Ris17, Lemma 7.2.1] for any I P Λ we have
that

multxe0,...,ery DI “ 1 ` dimpxei, i R Iy X xe0, . . . , eryq “ |pt0, . . . , nuzIq X t0, . . . , ru| “ dpI, I0q

Therefore, if degpSq “ p0, 1q the degree of the other generators of RpGpr, nq1q in PicpGpr, nq1q “ ZrHs‘ZrEs
is given by degpTIq “ p1,´dpI, I0qq.

The matrix representing this grading has size 2 ˆ pN ` 1q and is of the following form

A “

ˆ
0 1 1 . . . 1 1 . . . 1

1 0 ´1 . . . ´1 ´2 . . . ´pr ` 1q

˙

Our next aim is to find relations among the generators of RpGpr, nq1q. Note that for each pair I “ ti0 ă ¨ ¨ ¨ ă
ir´1u, J “ tj0 ă ¨ ¨ ¨ ă jr`1u Ă t0, . . . , nu with |I| “ r, |J | “ r ` 2, the polynomial

GIJ “
r`1ÿ

t“0

p´1qtTi0...ir´1jtTj1... pjt...jr`1

is homogeneous of degree p2,´|IzI0| ´ |JzI0|q. Let J Ă KrTI , I P Λs be the ideal generated by the GIJ . Since
KrTI ,IPΛs

J
is the homogeneous coordinate ring of Gpr, nq, then

dimpKrTI , I P Λs{Jq “ pr ` 1qpn ´ rq ` 1

and Remark 2.4 yields

dimpKrS, TI , I P Λs{Jq“pr ` 1qpn ´ rq ` 2“dimpGpr, nq1q ` rankpPicpGpr, nq1qqq“dimpRpGpr, nq1qq

where we denote by J the ideal generated by the polynomials GIJ in KrS, TI , I P Λs. We conclude that there

are no further relations in RpGpr, nq1q and hence RpGpr, nq1q “ KrS,TI ,IPΛs
J

as claimed. �

Now, we are ready to compute the Mori chamber decomposition of EffpGpr, nq1q.

Proposition 6.5. Let Gpr, nq1 be the blow-up of the Grassmannian Gpr, nq at a point. Then we have that
EffpGpr, nq1q “ xE,H ´ pr ` 1qEy, NefpGpr, nq1q “ xH,H ´ Ey and

MovpGpr, nq1q “

#
xH,H ´ rEy if n “ 2r ` 1;

xH,H ´ pr ` 1qEy if n ą 2r ` 1.

Furthermore, MCDpGpr, nq1q and SBLDpGpr, nq1q coincide and their walls are given by the divisors E,H,H ´
E, . . . , H ´ pr ` 1qE as represented in the following picture
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E

H

C´1

H ´ E

C0

H ´ 2E

C1
...

H ´ rE
Cr

H ´ pr ` 1qE

C´1 “ rE,Hq,
C0 “ NefpGpr, nq1q “ xH,H ´ Ey,
Ci “ pH ´ iE,H ´ pi ` 1qEs for i “ 1, . . . , r,

where with the notation Ci “ pH ´ iE,H ´ pi ` 1qEs we mean that the ray spanned by H ´ pi ` 1qE belongs to
Ci but the ray spanned by H ´ iE does not, and similarly with the notation C´1 “ rE,Hq we mean that the ray
spanned by E belongs to C´1 but the ray spanned by H does not.

Proof. The claims on the effective, nef and movable cones follow from [MR18, Theorem 1.3]. Furthermore, by
[MR18, Theorem 1.3] the decomposition displayed in the statement is the stable base locus decomposition of
EffpGpr, nq1q. Now, by Proposition 6.3 all the generators of RpGpr, nq1q appear in the walls of the stable base
locus decomposition of EffpGpr, nq1q, and then Proposition 5.2 yields that the Mori chamber and the stable base
locus decomposition of EffpGpr, nq1q coincide. �
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