Direct position analysis (DPA) of parallel manipulators (PMs) is in general difficult to solve. Over on PMs' topology, DPA complexity depends on the choice of the actuated joints. From an analytic point of view, the system of algebraic equations that one must solve to implement PMs' DPA is usually expressible in an apparently simple form, but such a form does not allow an analytic solution and even the problem formalization is relevant in PMs' DPAs. The ample literature on the DPA of Stewart platforms well documents this point. This paper addresses the DPA of a particular translational PM of 3-URU type, which has the actuators on the frame while the actuated joints are not adjacent to the frame. The problem formulation brings to a closure-equation system consisting of three irrational equations in three unknowns. Such a system is transformed into an algebraic system of four quadratic equations in four unknowns that yields a univariate irrational equation in one of the four unknowns and three explicit expressions of the remaining three unknowns. Then, an algorithm is proposed which is able to find only the real solutions of the DPA. The proposed solution technique can be applied to other DPAs reducible to a similar system of irrational equations and, as far as this author is aware, is novel.

Direct Position Analysis of a Particular Translational 3-URU Manipulator

Di Gregorio, Raffaele
Primo
2021

Abstract

Direct position analysis (DPA) of parallel manipulators (PMs) is in general difficult to solve. Over on PMs' topology, DPA complexity depends on the choice of the actuated joints. From an analytic point of view, the system of algebraic equations that one must solve to implement PMs' DPA is usually expressible in an apparently simple form, but such a form does not allow an analytic solution and even the problem formalization is relevant in PMs' DPAs. The ample literature on the DPA of Stewart platforms well documents this point. This paper addresses the DPA of a particular translational PM of 3-URU type, which has the actuators on the frame while the actuated joints are not adjacent to the frame. The problem formulation brings to a closure-equation system consisting of three irrational equations in three unknowns. Such a system is transformed into an algebraic system of four quadratic equations in four unknowns that yields a univariate irrational equation in one of the four unknowns and three explicit expressions of the remaining three unknowns. Then, an algorithm is proposed which is able to find only the real solutions of the DPA. The proposed solution technique can be applied to other DPAs reducible to a similar system of irrational equations and, as far as this author is aware, is novel.
2021
Di Gregorio, Raffaele
File in questo prodotto:
File Dimensione Formato  
JMR_013(December,2021)_061007(9pages).pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 822.26 kB
Formato Adobe PDF
822.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2472000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact