We investigate the uniqueness of decomposition of general tensors T∈ℂn1+1⊗⋯⊗ℂnr+1 as a sum of tensors of rank 1. This is done extending the theory developed in a previous paper by the second author to the framework of non twd varieties. In this way we are able to prove the non generic identifiability of infinitely many partially symmetric tensors.

Tangential Weak Defectiveness and Generic Identifiability

Casarotti, Alex
Primo
;
Mella, Massimiliano
Ultimo
2022

Abstract

We investigate the uniqueness of decomposition of general tensors T∈ℂn1+1⊗⋯⊗ℂnr+1 as a sum of tensors of rank 1. This is done extending the theory developed in a previous paper by the second author to the framework of non twd varieties. In this way we are able to prove the non generic identifiability of infinitely many partially symmetric tensors.
2022
Casarotti, Alex; Mella, Massimiliano
File in questo prodotto:
File Dimensione Formato  
Paper revised IMRN.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 334.99 kB
Formato Adobe PDF
334.99 kB Adobe PDF Visualizza/Apri
rnab091.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 275.3 kB
Formato Adobe PDF
275.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2459551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact