We investigate the uniqueness of decomposition of general tensors T∈ℂn1+1⊗⋯⊗ℂnr+1 as a sum of tensors of rank 1. This is done extending the theory developed in a previous paper by the second author to the framework of non twd varieties. In this way we are able to prove the non generic identifiability of infinitely many partially symmetric tensors.
Tangential Weak Defectiveness and Generic Identifiability
Casarotti, Alex
Primo
;Mella, MassimilianoUltimo
2022
Abstract
We investigate the uniqueness of decomposition of general tensors T∈ℂn1+1⊗⋯⊗ℂnr+1 as a sum of tensors of rank 1. This is done extending the theory developed in a previous paper by the second author to the framework of non twd varieties. In this way we are able to prove the non generic identifiability of infinitely many partially symmetric tensors.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Paper revised IMRN.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
334.99 kB
Formato
Adobe PDF
|
334.99 kB | Adobe PDF | Visualizza/Apri |
rnab091.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
275.3 kB
Formato
Adobe PDF
|
275.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.