We present results of ferromagnetic resonance (FMR) experiments and micromagnetic simulations for a distorted, two-dimensional (2D) kagome artificial spin ice. The distorted structure is created by continuously modulating the 2D primitive lattice translation vectors of a periodic honeycomb lattice, according to an aperiodic Fibonacci sequence used to generate 1D quasicrystals. Experimental data and micromagnetic simulations show that the Fibonacci distortion causes broadening and splitting of FMR modes into multiple branches, which accompany the increasing number of segment lengths and orientations that develop with increasing distortion. When the applied field is increased in the opposite direction to the net magnetization of a segment, spin wave modes appear, disappear, or suddenly shift, to signal segment magnetization reversal events. These results show that the complex behavior of reversal events, as well as well-defined frequencies and frequency-field slopes of FMR modes, can be precisely tuned by varying the severity of the aperiodic lattice distortion. This type of distorted structure could therefore provide a tool for the design of complicated magnonic systems.

Magnetization dynamics of a Fibonacci-distorted kagome artificial spin ice

Giovannini L.
Penultimo
;
Montoncello F.
Ultimo
2020

Abstract

We present results of ferromagnetic resonance (FMR) experiments and micromagnetic simulations for a distorted, two-dimensional (2D) kagome artificial spin ice. The distorted structure is created by continuously modulating the 2D primitive lattice translation vectors of a periodic honeycomb lattice, according to an aperiodic Fibonacci sequence used to generate 1D quasicrystals. Experimental data and micromagnetic simulations show that the Fibonacci distortion causes broadening and splitting of FMR modes into multiple branches, which accompany the increasing number of segment lengths and orientations that develop with increasing distortion. When the applied field is increased in the opposite direction to the net magnetization of a segment, spin wave modes appear, disappear, or suddenly shift, to signal segment magnetization reversal events. These results show that the complex behavior of reversal events, as well as well-defined frequencies and frequency-field slopes of FMR modes, can be precisely tuned by varying the severity of the aperiodic lattice distortion. This type of distorted structure could therefore provide a tool for the design of complicated magnonic systems.
2020
Frotanpour, A.; Woods, J.; Farmer, B.; Kaphle, A. P.; De Long, L. E.; Giovannini, L.; Montoncello, F.
File in questo prodotto:
File Dimensione Formato  
PhysRevB.102.224435.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.95 MB
Formato Adobe PDF
4.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2012.06837.pdf

accesso aperto

Descrizione: pre print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2434181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact