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Abstract 

We present results of ferromagnetic resonance (FMR) experiments and micromagnetic          

simulations for a distorted, 2D Kagome artificial spin ice. The distorted structure is created by               

continuously modulating the 2D primitive lattice translation vectors of a periodic honeycomb            

lattice, according to an aperiodic Fibonacci sequence used to generate 1D quasicrystals.            

Experimental data and micromagnetic simulations show the Fibonacci distortion causes          

broadening and splitting of FMR modes into multiple branches, which accompany the increasing             

number of segment lengths and orientations that develop with increasing distortion. When the             

applied field is increased in the opposite direction to the net magnetization of a segment, spin                

wave modes appear, disappear or suddenly shift, to signal segment magnetization reversal            

events. These results show the complex behavior of reversal events, as well as well-defined              

frequencies and frequency-field slopes of FMR modes, can be precisely tuned by varying the              

severity of the aperiodic lattice distortion. This type of distorted structure could therefore provide              

a new tool for the design of complicated magnonic systems. 

  

Introduction  
Recent interest in geometrical frustration of magnetic order has led to the fabrication of a               

variety of submicron, thin-film structures that can be systematically controlled using the tools of              

 



nanofabrication. Artificial spin ices (ASI) were originally comprised of elongated segments of            

magnetic thin-film deposited to form a 2D periodic lattice whose frustrated topology depressed             

long-range magnetic order [1]. The strong shape anisotropy (length l >> width w >> thickness t)                

of disconnected, sub-micron segments makes them behave as classical Ising spins in the             

“Ising-saturated” regime, which refers to a state in which every “macrospin” has a magnetization              

texture oriented parallel to its long axis (typically for applied fields below 1000 Oe in the case of                  

magnetically soft Ni0.8Fe0.2 films).  

Given the magnetization M of an isolated segment is largely uniform and parallel to the long                

axis, one can define opposite magnetic charges (~ divM) confined to either end of an isolated                

segment. These considerations allow the magnetic dipole interactions among Ising segments to            

be approximated by a “dumbbell” charge model [1] for binary Ising dipoles. The magnetostatic              

energy of an ASI can be calculated by enforcing a “spin ice rule” (SIR) that minimizes the total                  

magnetic charge located near pattern vertices. This approach mimics the original development of             

the SIR that describes the ground state arrangement of atomic spins in the tetrahedral sublattice               

of pyrochlore spin ice [2], where frustration is generated among threefold tetrahedral bonds. 

Therefore, ASI provides a 2D mesoscopic system in which lattice parameters and key             

magnetic interactions can be tuned by geometric design. Various techniques can also be used to               

characterize the magnetic state of ASI, including FMR and magnetotransport data. Moreover,            

nanoscale imaging techniques such as PEEM and SEMPA [1, 14] can be used to directly observe                

the magnetic state of ASI to better understand correlation effects and resulting phase transitions.              

Of particular interest are the honeycomb and related Kagome lattices, because they are composed              

of threefold vertices that promote strong frustration in the case of nearest-neighbor            

antiferromagnetic interactions. Over the last decade, researchers have explored the magnetization           

dynamics of Kagome ASI (KASI), and sought to confirm a predicted phase transition into              

long-range magnetic order [2-13].  

However, the effects of subtle imperfections, disorder and reduced lattice symmetry on the              

stability of paramagnetism versus magnetic order in frustrated systems, together with what is             

sometimes referred to as “order out of disorder”, have recently received increasing attention. In              

this context, a novel class of aperiodic lattices in the form of 2D artificial quasicrystals (AQC)                

has been introduced to explore effects of reduced lattice symmetry on magnetic order within              

frustrated sublattices, controlled magnetic switching, and novel spin dynamics [14-21].  
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It is important to keep in mind that ASI, as “metamaterials” (materials by design), offer new                

paradigms for development of locally manipulable magnetic memories, complex magnetic          

switching networks, and magnonic devices [9, 15-17]. In particular, spin waves in ASI are              

analogous to electric current in conducting networks in which charged information carriers can             

move at the cost of Joule heating; whereas spin waves can potentially move in a lossless fashion,                 

which is promising for designs of spin-wave-operated logic gates [22-23]. Furthermore, Kagome            

ASI offer a simple symmetry for implementing “signal forking”, which is a basic feature of               

neural networks; they therefore represent good candidates for creating structures for           

neuromorphic computing [24-27]. The introduction of the Fibonnaci distortion degree of           

freedom presents a novel adjustable parameter that can mimic the adaptability and plasticity of              

neural networks.  

However, efforts to precisely control the “degree of disorder” presented by AQC are             

hampered by the fact that the exotic (e.g., fivefold or eightfold) rotational symmetries of AQC               

forbid their continuous distortion into a periodic Bravais lattice (i.e., 2D AQC are “topologically              

inequivalent” to periodic lattices). Nevertheless, it is possible to continuously distort a 2D             

Bravais lattice into an aperiodic array by utilizing an aperiodic Fibonacci sequence that is              

closely related to the structures of various types of quasicrystal arrays [14-20]. An example is               

shown in Fig. 1, where the spacings of incomplete planes of parallel segments in a Penrose P2                 

tiling follow a Fibonacci sequence of long (L) and short (S) distances. The fact that quasicrystals                

exhibit aperiodicity that can be precisely described by mathematical algorithms places them in a              

unique, intriguing category of controlled, intermediate disorder, compared to random aperiodic           

arrays. We anticipate such intermediate systems will exhibit novel, interesting magnetic           

dynamics and ground state order [14, 15], which is a prime motivation of the present study. 

Herein, we report our FMR study of a connected Fibonacci-distorted KASI (FKASI), which             

permits the sixfold rotational and periodic translational symmetries of the undistorted           

honeycomb lattice to be continuously reduced; the resulting aperiodic lattice retains only mirror             

symmetry, and features modified shape anisotropies and magnetic moments of various film            

segments, as shown in Fig. 2. Most ASI studied to date have been disconnected, periodic lattices                

of elongated film segments that mimic classical Ising dipoles [2, 14, 15]. However,             

magnetoresistive devices [28-30] and other potential applications of wire networks [31, 32] are             

more amenable to connected lattices of segments. However, the connections introduce           
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complications from formation of magnetic domain walls (DW) and short-range exchange           

interactions within lattice vertices, which can modify SIR and alter magnetic ground states and              

magnetic reversal. Fortunately, systematic methods can be applied to take these complications            

into account [14]; and we will focus on connected KASI in this work. 

Ferromagnetic resonance (FMR) spectroscopy is a proven, powerful probe of the           

magnetization dynamics of periodic KASI [7-10] and AQC [13, 15-18]. Combined with the             

interpretive help of micromagnetic simulations, FMR can detect resonances originating from a            

group of ASI segments with specific magnetization orientations with respect to the applied field              

[9]. For applied fields below the Ising saturation regime, FMR spectra largely reflect the              

orientation of Ising spins that belong to distinct sub-groups of segments. For example, a              

relatively high-frequency branch of FMR modes generally indicates a set of segments that makes              

a relatively small angle with respect to the applied field. Therefore, a rotational FMR study               

strongly reflects the symmetry of the lattice and the shape anisotropy of segments [15, 16], which                

can be systematically varied by fabricating ASI having different segment cross sections and             

lengths. 

FMR spectra can also reveal different types of magnetic ordering, based on the field              

dispersion of the resonance frequency, df/dH. For example, chiral order (i.e., a sublattice with a               

flux closure state) is expected to have degenerate FMR modes at zero field. This degeneracy is                

lifted by applying an external field H, such that the resonances of segments with Ising spins                

aligned parallel (antiparallel) to the field have positive (negative) df/dH [33]. The            

Fibonacci-distorted square ASI exhibits such a flux closure motif, which is also implicated from              

step anomalies and plateaus observed in the magnetization M(H) [18]. 

This paper is organized as follows: First, we describe the geometry of the Fibonacci              

distortion of a connected KASI. Second, we characterize the branches of FMR modes for the               

case of Ising saturation, and show how the modes and their bandwidths are modified by               

Fibonacci distortions of several severities (parameterized by the ratio r ≡ L/S of long (L) and                

short (S) Fibonacci spacings). Then, we examine field-sweep FMR data, especially in the             

low-field region, which show that the distortion also causes anomalies in the reversal behavior.              

Our detailed micromagnetic simulations of the FMR response enable a detailed understanding of             

these behaviors. The results suggest that FKASI have tunable resonance frequencies and            

bandwidths suitable for magnonic devices. Moreover, we show the segment reversals can be             
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controlled by the degree of distortion r. Finally, we show the low-frequency FMR modes              

correspond to the resonances near lattice vertices, which we refer to as “localized domain wall               

modes” (LDW). We show how the aperiodic distortion affects DW modes by changing the shape               

anisotropy of the vertices, which may find applications in the design of reconfigurable magnonic              

devices. Technical details, including sample fabrication, FMR measurement techniques, and          

numerical simulations, are given in an Appendix near the end of the paper.  

 

Geometry of a FKASI 

 The KASI can be generated from a periodic honeycomb lattice that has a two-site basis (note 

the type A and B vertices), as shown in  Fig. 1 (a). A Fibonacci distortion is applied to the 

honeycomb lattice by first replacing the primitive lattice translation vectors, a and b by a chain 

of “long” or “short” distances corresponding to the “Fibonacci word” [34]: 
Sn = Sn-1 Sn-2 , 

where n ≥ 2, S0 ≡ 0 and S1 ≡ 01. When applying the word to a lattice distortion, 0 corresponds to                      

“long” (L) and 1 corresponds to “short” (S), as shown in Fig. 1. The relative lengths between                 

the long and short primitive translation vectors can then be adjusted such that the ratio, r = L/S,                  

varies from r = 1.00 (Fig. 2 (a)) for the undistorted case to r = 1.62 (Fig. 2 (e)) for the most                

distorted pattern.  This type of distortion can be applied in a very straightforward fashion in the               

case of square ASI [18] where the primitive translation vectors are orthogonal. In contrast, the               

primitive lattice translation vectors of the honeycomb lattice are not orthogonal, and although the              

underlying parallelogram lattice is distorted in a unique fashion, the basis site (violet dots in Fig.                

2 (a)) in the distorted array can be chosen in various ways: we have chosen to place the basis                   

site in the center of a triangle formed by the distorted primitive lattice points of the honeycomb                

lattice (green dots in Fig. 2 (a)). An example of a fabricated sample with r = 1.62 is shown in                    

Fig. 3. 

Note that the 2D Penrose P2 tilings (P2T) are true quasicrystals, and an example of five-fold                

rotational symmetry that cannot be created by continuous distortion of a 2D Bravais lattice (they               

are topologically inequivalent). Moreover, the P2T has five mirror planes, any one of which              

could define the Fibonacci sequence of planar spacings shown in Fig. 1. In contrast, the               

Fibonacci-distorted honeycomb exhibits only one mirror plane and no rotational symmetry, even            

though it is a continuous distortion of a sixfold Bravais lattice.  
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Results and Discussion 

Broadband (BB) FMR spectroscopy was performed using a vector network analyzer (VNA);             

the applied DC magnetic field was in the x-direction (shown in Fig. 3). We used an end-launch                 

connector to connect a microstripline to the VNA, and placed the samples facing the              

microstripline (“flip-chip” geometry). Details about the set up are given in the Appendix. We              

sweep the frequency from 8 GHz to 16 GHz to find higher frequency modes, and from 3 GHz to                   

9 GHz to find lower frequency modes for a given applied field value. For each sample, we                 

applied a field H = +3000 Oe and extracted S12 from the VNA output while sweeping the                 

frequency. Then, we swept the magnetic field from +1000 Oe to -600 Oe, and recorded S12 from                 

the VNA output at each field. S12 data for +3000 Oe were subtracted from lower-field data for                 

background signal removal. We use the Object Oriented Micromagnetic Framework (OOMMF)           

to simulate the FMR spectrum for comparison to our experimental data and further analysis.              

Details about the simulations are given in the Appendix.  

  

1. BB FMR Data at H = 1000 Oe 

Figures 4 (a) and (b) show experimental and simulated FMR spectra in an applied magnetic                

field H = 1000 Oe for distortion ratios, r = 1.0, 1.15, 1.3, 1.45 and 1.62; The distortion creates                   

five groups of segments, labeled I-V according to their easy axis orientation with respect to the                

applied field (see Roman numerals I-V shown in Fig. 2 (e)). We will show that each FMR mode                  

corresponds to a resonant response located within one of these groups of segments: Therefore,              

we label the corresponding FMR Modes I-V, as shown in Figs. 4 (a) and (b). 

The spatial designs of patterned magnetic films play a crucial role in tuning the spin wave                

modes. The Fibonacci distortion of the honeycomb lattice therefore significantly alters the FMR             

modes observed in both experiment and simulations: We observe frequency shifts and            

broadening of FMR modes, and new FMR modes emerge as the ratio r increases. For example,                

we can clearly see Mode II broadening in the experimental data as r increases, as shown in Fig. 4                   

(a). In the most severe distortion case, r = 1.62, we can see that Mode II splits into Modes II and                     

III. However, the splitting of Mode II can be found in simulations for r ≽ 1.3, as shown in Fig. 4                     

(b). Moreover, the Mode II and III frequencies shift higher, indicating a reduction of              
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demagnetization field with increasing r. Furthermore, we found Mode IV emerges for r ≽ 1.3               

without a noticeable change with increasing r, except for a slight frequency reduction, as can be                

seen in Fig. 4 (a). Mode I does not change with distortion in the simulation; however, we                 

observe a slight broadening in the experimental data. Note that we did not observe Mode V in                 

experiments, although we found this mode in the simulations just below the Mode II frequency,               

as can be seen in Fig. 4 (b).  

Next, we confirm that Modes I-V correspond to resonant response located in Segments I-V,              

respectively, by comparing the spatial distribution of FMR absorption (mode profile) with            

simulation results. The mode profiles for r = 1.62 are shown in Figs. 4 (c)-(g), where Modes I-V                  

are highly visible inside the bodies of Segments I-V (bulk modes). This behavior is expected,               

since the higher (lower) frequency modes correspond to segments with an easy axis more aligned               

(tilted) with respect to the applied field. Note the easy axes of Segments I-V for r = 1.62 make                   

angles with the +x-direction of 0o, 60o, 47.5o, 7.5o and 78o, respectively.  

 

2. Frequency-Field Sweeps and Reversal Behavior 

FMR mode behavior in the Ising saturated regime can be well characterized by measuring               

resonance frequencies as the applied magnetic field is swept from +1000 Oe to -600 Oe.               

Experimental and simulated frequency-field graphs are shown in Figs. 5 (a)-(c) for r = 1.0, 1.3,                

and 1.62, respectively. The modes are labeled I-V in the same manner as in the previous Section,                 

and we found good agreement between experimental and simulation results. All modes have             

positive df/dH for fields in between 1000 Oe and -300 Oe. Below 500 Oe, for r = 1.3 and 1.62,                    

Mode IV disappears. Furthermore, for r = 1.62, Modes II and Mode III merge into a single                 

resonance mode, which is consistent with simulation results shown in Fig. 5.  

Aside from mode dynamics, we find reversal behavior is also affected by increasing r. Given                

our fabricated segment dimensions, it is known that the undistorted KASI does not exhibit a               

two-step reversal, or that the two fields of the step anomalies are very close together [6-7].                

However, an unexpected FMR mode appears during reversal for r = 1.3 and r = 1.62. For r = 1.0                    

and fields down to H = -300 Oe, we could observe two major Modes I and II with positive df/dH.                    

Mode II disappears near H = -300 Oe and the amplitude of Mode I gradually decreases down to                  

-350 Oe (See Appendix Fig. A2). We are motivated to define a “reversal event” near -350 Oe,                 

where Mode I-R (we will indeed show that this mode corresponds to the reversal of Segments I)                 
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suddenly appears with negative df/dH and gradually increasing absorption intensity. Also, Mode            

II-R (which we will show corresponds to the reversed Segments II) appears at -400 Oe with                

negative df/dH. The results for r = 1 suggest a large number of segments reverse at -350 Oe, and                   

that there is no apparent two-step anomaly during reversal.  

We now discuss the effects of the distortion on modes during reversal. For r = 1.3 in Fig. 5 (b),                     

we observe Mode I (Mode II) at applied fields in between H = 1000 Oe and H = -350 Oe (H=                     

-300 Oe), while Mode I is observed with smaller absorption intensity near -350 Oe. We find an                 

unexpected (i.e., an analogous mode is not observed for non-distorted samples) FMR mode in              

the interval, -300 Oe to -400 Oe, with positive df/dH. This mode is labeled “N”, as shown in Fig.                   

5 (b), both in experiment and simulation. Mode I-R suddenly appeared at H = -300 Oe with                 

negative df/dH. The amplitude of Mode I-R gradually increases with decreasing field. 

For r = 1.62, we observed Mode I with noticeable amplitude, which persisted down to a field                  

of -350 Oe where Mode I-R suddenly appeared. The amplitude of Mode I-R gradually increases               

with decreasing field. Another Mode N’ appears at H = -300 Oe, and has almost zero df/dH down                  

to H = -400 Oe.  Another Mode II-R appears at -450 Oe.  

The FMR experimental data and simulation results in the reversal region (in between H = -300                 

Oe and H = -400 Oe) indicate the distortion creates the anomalous Modes N and N’, and changes                  

the sequence of segment reversal events, which motivated additional investigation of mode            

profiles in the reversal region. This clarifies the evolution of segment configurations during             

reversal, and their effect on the internal field and FMR resonance behavior. We show that the                

abrupt appearance of Mode N in the spectrum correlates with segment reversal events that              

change the demagnetization field of the sample. For example, Figs. 6 (a)-(c) show magnetization              

configurations for r = 1.3 during reversal for -380 Oe, -440 Oe and -460 Oe. The magnetization                 

configurations show that the reversal begins in segments at the boundaries of the FKASI at -380                

Oe, followed by reversal of another group of segments at -440 Oe. We can see that all segments                  

are reversed at -460 Oe. Consequently, we have a coexistence regime of reversed and              

non-reversed segments for fields in the range, – 460 Oe ≤ H ≤ -380 Oe.  

Note that, within the reversal regime, some chiral states (closed loops of magnetization; see               

Fig. 6 (b)) are observed in the simulated magnetization. The loop magnetization is composed of               

segments with opposite magnetization, which causes the FMR spectrum to exhibit the            

coexistence of modes with opposite values of df/dH [8]. We can identify evidence of chiral states                
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by examining the strongest mode profiles simulated during magnetization reversal, as shown in             

Fig. 7 for H = -440 Oe. By comparing Figs. 7 and 6 (b), we can see the mode with frequency                     

10.2 GHz (Mode N) resides in non-reversed segments, while the mode with frequency 11.7 GHz               

(Mode I-R) resides in reversed segments. The chiral state should be signaled by splitting of these                

bulk-mode frequencies (see magnetization texture in Fig. 6 and Modes I-R and N in Fig. 5 (b)). 

These observations imply the distortion creates a chiral state during reversal with a             

significant change in demagnetization field, and indicates spectra will be sensitive to the value of               

r. Evidence for the chiral state is important, since it dominates the long-range-ordered Kagome              

ground state, making the honeycomb lattice an attractive mesoscopic system that can be directly              

imaged as a model 2D metamaterial with one or more phase transitions [5]. Our present study                

adds interesting effects of “intermediate disorder” on the chiral state to this list. 

 

3. Localized Domain Wall Modes 

Domain walls form in the vertices of connected ASI [14], which influences the FMR modes 

differently compared to the case of disconnected Ising segments. Depending on the shape of the 

vertex and DW type, peculiar FMR modes can be locally excited within and near vertices. These 

modes usually have lower resonance frequencies compared with segment bulk modes because of 

the lower internal fields (higher demagnetization field) present in the vertex region [21]. These 

modes can be useful for designing magnonic devices in which patterned magnetic structures are 

utilized to gate spin waves in logic and data storage devices [23]. FMR mode characterization is 

therefore an important step towards designing functional magnonic devices. We now show how 

the distortion affects the vertex shape, and consequently, changes FMR mode characteristics in 

the vertex region. 

Two types of modes related to the vertices are observed. First, vertex center modes (VCM)               

[21] extend throughout and slightly beyond the vertex. Second, LDW modes are more localized              

in DW at vertices. The VCM and LDW modes are identified in experimental and simulation               

results shown in Fig. 5 (a)-(c) for ratios r = 1, 1.3 and 1.62. VCM and LDW modes both have                    

positive df/dH, and the slope for VCM is larger than that for LDW modes. 

A VCM was observed experimentally only for r = 1.0 with a higher frequency compared to                

the LDW modes. On the other hand, we experimentally observed LDW modes for all ratios, r.                

Note that LDW modes in the experiment are broader in frequency compared to the VCM, for                
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larger r (See Appendix Fig. A3). The simulation results are consistent with the experiment. In               

Fig. 5 (a)-(c), we can see several LDW modes for r = 1.0. As r increases, the number of LDW                    

modes increases, and experiment detects them as a single, broadened mode. We will use the               

mode profiles to show that an increase in the number of LDW modes is a consequence of the                  

increasing distortion of the vertex shape as r increases. The shape of a vertex depends on the                 

three connecting segments that make 120o angles with respect to one another for r = 1.0. The                 

Fibonacci distortion changes the angles between segments in vertices and, therefore, forms            

different vertex types as the honeycomb lattice is distorted (these vertex types are shown in               

Appendix Fig. A4). 

We confirmed the VCM and LDW modes reside inside the vertices and DW, respectively.              

We plot mode profiles for H = 1000 Oe with r = 1.0 and r = 1.62, in Figs. 8 (a) - (e). The VCM                         

resonance intensity extends throughout the vertex for both values of r; whereas the LDW mode               

intensity is more localized within the DW region. Domain walls for a non-distorted and a               

distorted vertex (simulated for r = 1.62) at 1000 Oe are shown in Figs. 9 (a) and (b).                  

Comparisons of the LDW mode profile with DW locations show that the LDW mode profiles are                

highly sensitive to small changes of the locations of the DW.  

The behavior of the low-frequency modes can be summarized as follows: (1) VCM exist in               

non-distorted vertices. Note that the applied field is in the direction of one of the segments' easy                 

axes, which is necessary for VCM to exist [21]. (2) VCM do not exist in distorted vertices with                  

applied field in +x-direction, since the easy axes of many segments are no longer in the direction                 

of the applied field. (3) LDW modes exist within vertex DW. Each vertex type can have a                 

specific mode frequency, depending on vertex shape. This suggests that the distortion of the              

honeycomb lattice can be a useful tool for the design of magnonic crystals. 

Finally, we point out a remarkable feature of the “intermediate disorder” of FKASI with               

potentially interesting applications. Due to the Fibonacci distortion, which is continuously           

variable, the orientations of some segments and the shape of some vertices are strongly              

dependent on the ratio r. On the other hand, the shapes of other vertices do not significantly                 

change from those for r = 0. Moreover, the magnetization textures at the unchanged vertices are                

not significantly altered, which implies the frequencies of the vertex modes are not significantly              

altered. For this reason, FKASI spectra possess both changing frequency peaks as well as              

invariant peaks. From the perspective of applications, this fact can be particularly useful: By              
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changing the r parameter, the modes extended along the segments (likely to be important for               

information delivery) change their frequency and propagation, but at the same time, a subset of               

VCM maintain their frequencies and can be used as reference control signals as r is varied.                

Hence, the quest for “topological invariant” modes could play a remarkable role when dealing              

with tunable quasicrystalline ASI. It will be necessary to determine the best design geometry and               

Fibonacci distortion that would provide easily detectable (intense) VCM/LDW, which is outside            

the scope of this paper. 

 

Conclusion and Outlook for Applications 

We have demonstrated that the FKASI is an aperiodic array whose FMR modes and segment               

reversal can be systematically controlled by varying the severity of a Fibonacci lattice distortion              

of a periodic honeycomb lattice. In particular, multiple modes with controlled resonance            

frequencies can be designed, and the range of frequencies spanned by a mode can be controlled.                

Our results show the complex behavior of reversal events, as well as distinct frequencies and               

frequency-field slopes of FMR modes, can be precisely tuned by varying the severity of the               

aperiodic lattice distortion. Moreover, the degree of distortion could be a particularly effective             

parameter for altering the ground state magnetic order and phase transitions among specific             

sublattices of the FKASI lattice [14]. We have detected two types of low-frequency vertex              

modes (VCM and LDW modes) that are sensitive to the distortion, such that each vertex type                

generates a LDW mode with a specific frequency. Our results also suggest VCM modes can also                

be controlled by varying the angle of the applied field. 

In summary, Fibonacci distortion serves as a new tool to control FMR modes of patterned               

magnetic films over a large range frequency, and this type of structure could simplify problems               

in the design of complicated magnonic systems. Discontinuities in the field-dependent FMR            

mode frequencies and altered reversal events in distorted samples could be exploited for             

controlling magnetic switching. One of our principal findings is that the smearing of a resonance               

peak of the FKASI is not necessarily a negative thing: it is a consequence of the reduction of the                   

segment frequency degeneracy; that is, the distortion creates subsets of segments with different             

size and orientation, each subset being characterized by a specific frequency and relative             

intensity. Hence, when magnetic oscillations are associated with binary digits, a distorted ASI             

can be seen as a multi-signal device, conveying simultaneously more signals in parallel (different              
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frequencies correspond to different oscillation regions), which might have interesting          

applications as well.  
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Figure 1.  Fibonacci spacing in 3rd generation Penrose P2 tiling. L is “long” and S is “short”. The ratio of 
L/S is 1.62. The Fibonacci word in the figure is S4 = 01001010 = LSLLSLSL. Letters on the right margin 
show the expansion of the Fibonacci word from the center of symmetry in either the up or down 
directions.  
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Figure 2. Geometry of the KASI distortion. (a) Undistorted KASI of third generation (r = 1); a                 
and b are the undistorted primitive vectors. Green dots (type-A lattice point) are primitive lattice               
points, and violet dots (type-B lattice point) define the basis positions. (b)-(d): In the distorted               
lattice, the length of the primitive vectors is either long (L with blue color) or short (S with red                   
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color), according to the Fibonacci sequence. Distorted ASI are shown for r = L/S = 1.15, r = 1.3                   
and r = 1.45. (f): Distorted ASI for r = 1.62. Different segment types are shown in different                  
colors and labelled by Roman numerals. For example, the blue segments aligned along the x-axis               
are assigned the numeral I. We can see a sixfold rotational symmetry of the undistorted KASI is                 
reduced to one mirror plane that is indicated by the orange vector along the x-axis. 
 

 

 

 

 

Figure 3. SEM image of the FKASI for r = 1.62 patterned on a quartz substrate. The orange                  

line denotes the +x-direction and the location of a mirror plane. The width of the segments is w ~                   

140 nm (note the 1-micron scale bar). 
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Figure 4. FMR results for applied field H = 1000 Oe for different distortion ratios r. (a) S12                   

(transmission from VNA port 1 to port 2) as a function of frequency for each value of r. (b)                   

Numerical simulations of the absorption spectrum as a function of frequency for each value of r.                

Note that modes are labeled for r = 1.0 and 1.62. The mode labeling is consistent with                 

corresponding segments labeled I-V. (c)-(g) Mode profiles for r = 1.62 for five peaks of the                

absorption spectrum. Segments in (c)-(g) are labeled corresponding to the mode labels. The color              

bar represents absorption intensity, where red is maximum absorption intensity and blue is zero              

absorption intensity.  
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Figure 5. Experimental (top panels) and simulation (bottom panels) results for field vs.             

frequency for samples with the following distortions: (a) r = 1.0, (b) r = 1.3 and (c) r = 1.62.                    

High frequency modes are labelled I, II, II, IV and V, and assigned colors. Modes labeled I-R                 

and II-R are created after reversal. The color bar defines 1 (dark) for maximum absorption               

intensity and 0 (light) for no absorption.  
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Figure 6. Simulated magnetization textures for three values of applied field (a) H =-390 Oe, (b)                

H = -440 Oe and (c) H = -460 Oe, during a sweep from +1000 Oe to -600 Oe. Magnetization                    

reversal of several segments begins at -390 Oe followed by additional segment reversals at -440               

Oe. All segments are reversed at -460 Oe. Blue and red indicate reversed and non-reversed               

regions, respectively. Small arrows indicate magnetization direction; curved arrows indicate          
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chiral cells. 

 
 
 

 
 

Figure 7. Mode profiles at H = -440 Oe for r = 1.3. The mode profile for frequency 9.7 GHz                    

(right) exhibits a resonance of non-reversed segments, and the mode profile at 12.6 GHz (left)               

exhibits a resonance of reversed segments. The color bar represents absorption intensity, where             

red is maximum intensity and blue is zero intensity.  
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Figure 8. Mode profiles for LDW modes. (a) and (b) show the mode profiles for an applied                 

field H = 1000 Oe for r = 1.0 at 8.2 GHz (VCM) and 5.2 GHz (LDW mode), respectively.                   

(c)-(e) shows mode profiles for r = 1.62 at 8.4 GHz (VCM), 4.6 GHz (LDW) and 4.2 GHz                  

(LDW), respectively. (d) and (e) show that two different vertex types resonate at different              

frequencies. 

 

 

Figure 9. (a) Magnetization texture of a representative vertex in KASI for r = 1. (b) The corresponding                  

texture for a distortion ratio r = 1.62. DW are shown by green lines. The applied field is H = 1000 Oe,                      

oriented horizontally to the right.  
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Appendix: 

A. Experimental Details 

A.1.  Sample Fabrication  
Samples were patterned on a quartz (SiO2) substrate. The substrates were cleaned by             

sonication in acetone and IPA for 5 minutes each, then rinsed in DI water and blown dry with                  

compressed N2. Any remaining organic solvents were removed from the substrates by plasma O2              

cleaning. The substrates were then spin-coated with a bilayer of PMMA A4, 495K and 950K               

resist. Before patterning, a 7-nm-thick layer of Au was sputtered on the bilayer of PMMA A4 to                 

reduce any charging caused by the insulating nature of the quartz substrates. The PMMA was               

then exposed using electron beam lithography. The Au film was then removed with a standard               

Au etch solution. The exposed PMMA A4 bilayer was then developed in a solution of ethyl                

alcohol and DI Water. Samples were then loaded into an electron beam evaporator system. A               

vacuum of approximately 5.0×10-7 to 8×10-7 Torr was achieved before deposition of permalloy at              

a rate of 0.03 nm/s to the desired thickness of 25 nm. Al was then deposited at a rate of 0.02 nm/s                      

to a desired thickness of 1.5 nm to passivate the permalloy to oxidation. Thickness and               

deposition rate were estimated with a crystal thickness monitor placed inside the electron beam              

evaporator chamber. Samples were then developed in Microposit 1165 for the lift-off procedure.  

A final check of pattern quality, location and segment widths was done using SEM imaging               

in a Raith eLine Electron Beam Lithography System. Figure 2 shows an SEM image of a KASI                 

sample with r = 1.62. The patterned sample was a hexagon of approximate 43 × 43 um                 

dimension, repeated in a grid of 4 × 80 hexagons with a lattice spacing of 100 um. The                  

undistorted hexagonal pattern has a segment length l = 500 um and width W ≈ 140 nm. 

 

A.2.  FMR Methods 

The experimental FMR setup includes an electromagnet, a vector network analyser (VNA),            

and a microstripline. A sample film-on-substrate is placed as a flip-chip on the microstripline,              

which is composed of a signal line, substrate and ground plane, as shown in Fig. 3. The substrate                  

is a 100-micron-thick, industrial-grade Kapton film that is attached using a silicone adhesive to a               

copper plate that functions as a RF ground plane. The signal line is designed with four parallel                 

conducting strips of 20-micron width and 8-mm length. The center-to-center distance between            

these strips is 100 micron, and they join at both ends to a conducting strip of 320-micron width                  
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(shown in Fig. 3, top view). We used standard photolithography to fabricate the signal line. First,                

we sputtered 200 nm of copper on the Kapton film. Then, we spin-coated the copper-coated               

Kapton film with S-1813 photoresist, followed by exposure to a high-power laser source under              

the photomask. The film was then developed using a S-1813 developer. Finally, the redundant              

copper was etched using diluted ferric chloride, and the remaining photoresist was removed             

using acetone. The patterned sample was placed as a flip-chip such that magnetic material was               

aligned with the 20-micron stripes to obtain optimal coupling to RF signals, as shown in Fig. 3                 

(top view). 

 

A. 3. Numerical Simulations 

Micromagnetic simulations were performed using the Object Oriented Micromagnetic         

Framework (OOMMF). In OOMMF, we used a 10-nm-by-10-nm mesh cell size with a 25-nm              

film thickness. The film material was Permalloy with a saturation magnetization MS = 800 kA/m               

and exchange stiffness constant A = 1.3×10-12 J/m [35]. To find the FMR absorption spectrum,               

we first initialized the magnetization M to be uniformly saturated along the applied DC field (H)                

in +x-direction. We sweep the field from +1000 Oe to -900 Oe with 20 Oe steps however 5 Oe                   

steps was used for the field range of -200 Oe to -500 Oe (around reversal fields). The                 

magnetization vectors for each cell are recorded. Then, we applied an out-of-plane (z-direction)             

magnetic field of magnitude 10 Oe in a direction perpendicular to H for 20 picoseconds. We                

recorded the magnetization vectors 1000 times in 20 picoseconds time steps. We used a fast               

Fourier transform (FFT) to find the spectrum for each film cell. The cutoff frequency is 25 GHz                 

and frequency resolution is 25 MHz. The total absorption spectrum corresponding to the BB              

FMR data was found by averaging the spectrum of all cells. Also, we found the spatial                

distribution of the FMR absorption by color plotting of the spectrum in each cell at the desired                 

frequency.  
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Figure A1. Set up for BB FMR measurements. The top figure shows a cross-sectional            

view. Green denotes the sample. and placed as a flip-chip on the red microstripline              

deposited on the Kapton substrate, which is attached on the solid copper plane using              

silicone adhesive. The bottom figure shows the top view of the setup. The red on the                

lower-left image is the microstripline, and green dots represent arrays of ASI. The bottom              

right shows an optical image of an ASI sample patterned on a quartz substrate, which is                

placed as a flip-chip on the microstripline and aligned with the narrow, 20-micron strips. 
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Figure A2. S12 as a function of frequency for applied fields -500 Oe ≤ H ≤ 400 Oe for (a) 

r = 1.0 (b), r = 1.3 and (c) r = 1.62.  
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Figure A3. S12 as a function of frequency for applied fields 1000 Oe ≤ H ≤ 500 Oe for 

(a), (b) r = 1.0 (c), r = 1.3 and (d) r = 1.62.  
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Figure A4.  Different types of vertices created by the Fibonacci distortion. Angles are shown for 

r = 1.62. 
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