Two birational subvarieties of Pn are called Cremona equivalent if there is a Cremona modification of Pn mapping one to the other. If the codimension of the varieties is at least 2, they are always Cremona Equivalent. For divisors the question is much more subtle and a general answer is unknown. In this paper I study the case of rational quartic surfaces and prove that they are all Cremona equivalent to a plane.
Birational geometry of rational quartic surfaces
Mella Massimiliano
2020
Abstract
Two birational subvarieties of Pn are called Cremona equivalent if there is a Cremona modification of Pn mapping one to the other. If the codimension of the varieties is at least 2, they are always Cremona Equivalent. For divisors the question is much more subtle and a general answer is unknown. In this paper I study the case of rational quartic surfaces and prove that they are all Cremona equivalent to a plane.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CEquartics_JMPA_abs.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
302.25 kB
Formato
Adobe PDF
|
302.25 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0021782420301240-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
326.43 kB
Formato
Adobe PDF
|
326.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.