Two birational subvarieties of Pn are called Cremona equivalent if there is a Cremona modification of Pn mapping one to the other. If the codimension of the varieties is at least 2, they are always Cremona Equivalent. For divisors the question is much more subtle and a general answer is unknown. In this paper I study the case of rational quartic surfaces and prove that they are all Cremona equivalent to a plane.

Birational geometry of rational quartic surfaces

Mella Massimiliano
2020

Abstract

Two birational subvarieties of Pn are called Cremona equivalent if there is a Cremona modification of Pn mapping one to the other. If the codimension of the varieties is at least 2, they are always Cremona Equivalent. For divisors the question is much more subtle and a general answer is unknown. In this paper I study the case of rational quartic surfaces and prove that they are all Cremona equivalent to a plane.
2020
Mella, Massimiliano
File in questo prodotto:
File Dimensione Formato  
CEquartics_JMPA_abs.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 302.25 kB
Formato Adobe PDF
302.25 kB Adobe PDF Visualizza/Apri
1-s2.0-S0021782420301240-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 326.43 kB
Formato Adobe PDF
326.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2421398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact