Fix n≥5 general points p1,…,pn∈P1 and a weight vector A=(a1,…,an) of real numbers 0≤ai≤1. Consider the moduli space MA parametrizing rank two parabolic vector bundles with trivial determinant on (P1,p1,…,pn) that are semistable with respect to A. Under some conditions on the weights, we determine and give a modular interpretation for the automorphism group of the moduli space MA. It is isomorphic to (Z2Z)k for some k∈{0,…,n−1} and is generated by admissible elementary transformations of parabolic vector bundles. The largest of these automorphism groups, with k=n−1, occurs for the central weight AF=(12,…,12). The corresponding moduli space MAF is a Fano variety of dimension n−3, which is smooth if n is odd, and has isolated singularities if n is even.
On automorphisms of moduli spaces of parabolic vector bundles
Alex MassarentiUltimo
2021
Abstract
Fix n≥5 general points p1,…,pn∈P1 and a weight vector A=(a1,…,an) of real numbers 0≤ai≤1. Consider the moduli space MA parametrizing rank two parabolic vector bundles with trivial determinant on (P1,p1,…,pn) that are semistable with respect to A. Under some conditions on the weights, we determine and give a modular interpretation for the automorphism group of the moduli space MA. It is isomorphic to (Z2Z)k for some k∈{0,…,n−1} and is generated by admissible elementary transformations of parabolic vector bundles. The largest of these automorphism groups, with k=n−1, occurs for the central weight AF=(12,…,12). The corresponding moduli space MAF is a Fano variety of dimension n−3, which is smooth if n is odd, and has isolated singularities if n is even.File | Dimensione | Formato | |
---|---|---|---|
Aut_Par.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
235.51 kB
Formato
Adobe PDF
|
235.51 kB | Adobe PDF | Visualizza/Apri |
araujo2019.pdf
solo gestori archivio
Descrizione: Full text ahead of print
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
456.05 kB
Formato
Adobe PDF
|
456.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.