Fix n≥5 general points p1,…,pn∈P1 and a weight vector A=(a1,…,an) of real numbers 0≤ai≤1⁠. Consider the moduli space MA parametrizing rank two parabolic vector bundles with trivial determinant on (P1,p1,…,pn) that are semistable with respect to A⁠. Under some conditions on the weights, we determine and give a modular interpretation for the automorphism group of the moduli space MA⁠. It is isomorphic to (Z2Z)k for some k∈{0,…,n−1} and is generated by admissible elementary transformations of parabolic vector bundles. The largest of these automorphism groups, with k=n−1⁠, occurs for the central weight AF=(12,…,12)⁠. The corresponding moduli space MAF is a Fano variety of dimension n−3⁠, which is smooth if n is odd, and has isolated singularities if n is even.

On automorphisms of moduli spaces of parabolic vector bundles

Alex Massarenti
Ultimo
2021

Abstract

Fix n≥5 general points p1,…,pn∈P1 and a weight vector A=(a1,…,an) of real numbers 0≤ai≤1⁠. Consider the moduli space MA parametrizing rank two parabolic vector bundles with trivial determinant on (P1,p1,…,pn) that are semistable with respect to A⁠. Under some conditions on the weights, we determine and give a modular interpretation for the automorphism group of the moduli space MA⁠. It is isomorphic to (Z2Z)k for some k∈{0,…,n−1} and is generated by admissible elementary transformations of parabolic vector bundles. The largest of these automorphism groups, with k=n−1⁠, occurs for the central weight AF=(12,…,12)⁠. The corresponding moduli space MAF is a Fano variety of dimension n−3⁠, which is smooth if n is odd, and has isolated singularities if n is even.
2021
Araujo, Carolina; Fassarella, Thiago; Kaur, Inder; Massarenti, Alex
File in questo prodotto:
File Dimensione Formato  
Aut_Par.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 235.51 kB
Formato Adobe PDF
235.51 kB Adobe PDF Visualizza/Apri
araujo2019.pdf

solo gestori archivio

Descrizione: Full text ahead of print
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 456.05 kB
Formato Adobe PDF
456.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2405350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact