We introduce a method to produce bounds for the non secant defectivity of an arbitrary irreducible projective variety, once we know how its osculating spaces behave in families and when the linear projections from them are generically finite. Then we analyze the relative dimension of osculating projections of Grassmannians, and as an application of our techniques we prove that asymptotically the Grassmannian G(r, n), parametrizing r -planes in Pn, is not h-defective for h ≤ ( n+1/r+1 )[log2(r )]. This bound improves the previous one h ≤ n-r/3 + 1, due to H. Abo, G. Ottaviani and C. Peterson, for any r ≥ 4.

Non-secant defectivity via osculating projections

Massarenti A.;
2019

Abstract

We introduce a method to produce bounds for the non secant defectivity of an arbitrary irreducible projective variety, once we know how its osculating spaces behave in families and when the linear projections from them are generically finite. Then we analyze the relative dimension of osculating projections of Grassmannians, and as an application of our techniques we prove that asymptotically the Grassmannian G(r, n), parametrizing r -planes in Pn, is not h-defective for h ≤ ( n+1/r+1 )[log2(r )]. This bound improves the previous one h ≤ n-r/3 + 1, due to H. Abo, G. Ottaviani and C. Peterson, for any r ≥ 4.
2019
Massarenti, A.; Rischter, R.
File in questo prodotto:
File Dimensione Formato  
Alex_Rick_ASNS.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 838.46 kB
Formato Adobe PDF
838.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1610.09332.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 378.62 kB
Formato Adobe PDF
378.62 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2405346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact