We introduce a method to produce bounds for the non secant defectivity of an arbitrary irreducible projective variety, once we know how its osculating spaces behave in families and when the linear projections from them are generically finite. Then we analyze the relative dimension of osculating projections of Grassmannians, and as an application of our techniques we prove that asymptotically the Grassmannian G(r, n), parametrizing r -planes in Pn, is not h-defective for h ≤ ( n+1/r+1 )[log2(r )]. This bound improves the previous one h ≤ n-r/3 + 1, due to H. Abo, G. Ottaviani and C. Peterson, for any r ≥ 4.
Non-secant defectivity via osculating projections
Massarenti A.;
2019
Abstract
We introduce a method to produce bounds for the non secant defectivity of an arbitrary irreducible projective variety, once we know how its osculating spaces behave in families and when the linear projections from them are generically finite. Then we analyze the relative dimension of osculating projections of Grassmannians, and as an application of our techniques we prove that asymptotically the Grassmannian G(r, n), parametrizing r -planes in Pn, is not h-defective for h ≤ ( n+1/r+1 )[log2(r )]. This bound improves the previous one h ≤ n-r/3 + 1, due to H. Abo, G. Ottaviani and C. Peterson, for any r ≥ 4.File | Dimensione | Formato | |
---|---|---|---|
Alex_Rick_ASNS.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
838.46 kB
Formato
Adobe PDF
|
838.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1610.09332.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
378.62 kB
Formato
Adobe PDF
|
378.62 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.