We study the initial value problem for Schr"odinger-type equations with initial data presenting a certain Gevrey regularity and an exponential behavior at infinity. We assume the lower order terms of the Schrödinger operator depending on (t,x) in [0,T]xR^n and complex valued. Under a suitable decay condition as |x| goes to infinity on the imaginary part of the first order term and an algebraic growth assumption on the real part, we derive global energy estimates in suitable Sobolev spaces of infinite order and prove a well posedness result in Gelfand-Shilov type spaces. We also discuss by examples the sharpness of the result.
Schrödinger-type equations in Gelfand-Shilov spaces
Alessia Ascanelli;Marco Cappiello
2019
Abstract
We study the initial value problem for Schr"odinger-type equations with initial data presenting a certain Gevrey regularity and an exponential behavior at infinity. We assume the lower order terms of the Schrödinger operator depending on (t,x) in [0,T]xR^n and complex valued. Under a suitable decay condition as |x| goes to infinity on the imaginary part of the first order term and an algebraic growth assumption on the real part, we derive global energy estimates in suitable Sobolev spaces of infinite order and prove a well posedness result in Gelfand-Shilov type spaces. We also discuss by examples the sharpness of the result.File | Dimensione | Formato | |
---|---|---|---|
AscanelliCapielloJMPA_finalpublished.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
745.42 kB
Formato
Adobe PDF
|
745.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1807.04571.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
532.42 kB
Formato
Adobe PDF
|
532.42 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.