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SCHRÖDINGER-TYPE EQUATIONS IN GELFAND-SHILOV SPACES

ALESSIA ASCANELLI AND MARCO CAPPIELLO

Abstract. We study the initial value problem for Schrödinger-type equations with initial data
presenting a certain Gevrey regularity and an exponential behavior at infinity. We assume the
lower order terms of the Schrödinger operator depending on (t, x) ∈ [0, T ]× R

n and complex
valued. Under a suitable decay condition as |x| → ∞ on the imaginary part of the first order
term and an algebraic growth assumption on the real part, we derive global energy estimates
in suitable Sobolev spaces of infinite order and prove a well posedness result in Gelfand-Shilov
type spaces. We also discuss by examples the sharpness of the result.

RÉSUMÉ. Nous étudions le problème de Cauchy pour des équations de Schrödinger avec des
données initiales présentent une régularité de type Gevrey et un comportement exponentiel
a l’infini. Nous supposons les coefficients des terms d’ordre inferieur dépendant de (t, x) ∈
[0, T ]×R

n et à valeurs complexes. Sous une condition de décroissance convenable pour |x| → ∞
pour la partie imaginaire du terme du premier ordre et une hypotèse de croissance algébrique
sur la partie réelle, nous obtenons des estimations de l’énergie globales dans des espaces de
Sobolev d’ordre infini et prouvons que le problème de Cauchy est bien posé dans des espaces de
type Gelfand-Shilov. Nous discutons également par des exemples de l’optimalité du résultat.

1. Introduction

We consider for (t, x) ∈ [0, T ]× R
n the Cauchy problem

{
P (t, x, ∂t, ∂x)u(t, x) = f(t, x)

u(0, x) = g(x)
(1.1)

where

P (t, x, ∂t, ∂x) = ∂t − i△x +
n∑

j=1

aj(t, x)∂xj
+ b(t, x)(1.2)

= ∂t − i△x + A(t, x, ∂x)

is a partial differential operator with complex valued coefficients aj and b, and △x =
∑n

j=1 ∂
2
xj

,
as usual. The equation Pu = f with P in (1.2) is known in literature as a “Schrödinger-type
equation”.

It is well-known that when the coefficients aj , b are real valued, smooth and uniformly
bounded the Cauchy problem (1.1) is L2-well-posed, while if aj are complex valued suitable
decay conditions for |x| → ∞ are needed on the imaginary part of the coefficients in order to
obtain either L2 or H∞-well posedness (see [25] and a recent generalization [6] to evolution
equations with evolution degree p ≥ 2). In [23,26,29,33] convenient assumptions on the decay
of the imaginary parts of the coefficients aj are given in order to obtain well-posedness of (1.1)
in L2(Rn) and in H∞(Rn) as well as in the uniform Gevrey classes γs(Rn) of all functions
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2 Schrödinger equation in Gelfand-Shilov classes

f ∈ C∞(Rn) such that

(1.3) sup
x∈Rn

sup
α∈Nn

C−|α|(α!)−s|∂αx f(x)| <∞

for some C > 0, see [29]. According to the decay in x assumed for Im aj(t, x), we may register
or not a loss of derivatives of the solution with respect to the initial data. Also the more general
situation where the term ∆x in (1.2) is replaced by a term of the form a(t)∆x for a possibly
vanishing real valued coefficient a(t) has been recently considered, see [10, 11, 19, 20] and the
references therein.

A wide literature extending these kind of results to the so-called p-evolution equations (i.e.
anisotropic evolution equations with evolution degree p ≥ 2) with real characteristics has been
recently developed, see for instance [2–5, 18] and the references therein. Despite the precise
requirements on the decay at infinity of Im aj(t, x), all the above mentioned results do not give
any information on the behavior of the solution for |x| → ∞. This is mainly due to the fact
that, apart from the precise assumption on the decay of Im aj(t, x) for |x| → ∞, the lower order
terms in (1.2) are assumed to belong to the standard Hörmander classes. Namely, Re aj and
the derivatives of aj are simply assumed to be uniformly bounded in (t, x).

In the recent paper [9] we have considered in the case n = 1 a class of p-evolution operators
including (1.2) as a particular case, and proved that the Cauchy problem (1.1), (1.2) is well-
posed in the Schwartz spaces S (Rn), S ′(Rn) by deriving an energy estimate for the solution
in the weighted Sobolev spaces

(1.4) Hm(Rn) = {u ∈ S
′(Rn)| ‖u‖Hm = ‖〈x〉m2〈D〉m1u‖ <∞} , m = (m1, m2),

where ‖ · ‖ stands for the L2-norm and we denote by 〈D〉m1 the Fourier multiplier with symbol
〈ξ〉m1 := (1 + |ξ|2)m1/2. Notice that for m2 = 0 we recapture the standard Sobolev spaces and
that the following identities hold:

(1.5)
⋂

m∈R2

Hm(Rn) = S (Rn),
⋃

m∈R2

Hm(Rn) = S
′(Rn).

In particular, for a Schrödinger operator of the form

P (t, x, ∂t, ∂x) = ∂t − i ∂2x + a(t, x)∂x + b(t, x),

assuming that

(1.6) |∂βxa(t, x)| ≤ Cβ〈x〉−1−|β|, β ∈ N, x ∈ R

and

|∂βx b(t, x)| ≤ Cβ〈x〉−|β| β ∈ N, x ∈ R

for some positive constant Cβ, we proved that there exists δ > 0 such that for allm = (m1, m2) ∈
R

2, f ∈ C([0, T ];Hm(R)) and g ∈ Hm(R) there is a unique solution u ∈ C([0, T ];H(m1,m2−δ)(R))
which satisfies the following energy estimate:

‖u(t, ·)‖2
H(m1,m2−δ) ≤ C

(
‖g‖2Hm +

∫ t

0

‖f(τ, ·)‖2Hm dτ

)
∀t ∈ [0, T ],(1.7)

for some C = C(m) > 0.
The main novelty in the result above is the existence of a unique solution with the same regu-
larity as the Cauchy data but with a different behavior at infinity (either a loss of decay or an
increase in growth depending on the sign of m2). The result has been proved using pseudodif-
ferential operators in the SG classes, which are defined as follows. Given m = (m1, m2) ∈ R
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we define

SGm(R2n) = {p(x, ξ) ∈ C∞(R2n) | sup
(x,ξ)∈R2n

〈ξ〉−m1+|α|〈x〉−m2+|β||∂αξ ∂βxp(x, ξ)| <∞, ∀α, β ∈ N
n}.

These classes have been defined in [22,35] and employed in a large number of papers involving
differential operators with polynomially growing coefficients, see for instance [7–9, 13, 14, 22].

In the present paper we want to adapt the techniques used in [9] to study the problem (1.1)
in arbitrary dimension n ≥ 1 and assuming a weaker condition on the behavior at infinity of
the imaginary parts of the coefficients of the lower order terms, namely

|∂βx (Im aj)(t, x)| ≤ Cβ〈x〉−σ−|β| (t, x) ∈ [0, T ]× R
n, β ∈ N

n, 1 ≤ j ≤ n

and

|∂βx (Re aj)(t, x)|+ |∂βx b(t, x)| ≤ Cβ〈x〉1−σ−|β|, (t, x) ∈ [0, T ]× R
n, β ∈ N

n, 1 ≤ j ≤ n,

for some σ ∈ (0, 1), with Cβ = C |β|+1β!so for some so > 1 and some C > 0 independent of β. In
fact, the choice of σ ∈ (0, 1) leads in general to study the problem (1.1) in Gevrey-type spaces,
cf. [19,29], hence it is natural to assume Gevrey regularity of the aj and b, that is Cβ as above.
We are going to prove that the Cauchy problem (1.1) (1.2) admits a unique solution in suitable
Gelfand-Shilov classes, see Theorem 1.1 here below.
More to the point, we recall that, fixed s > 1, θ > 1 the Gelfand-Shilov space Sθ

s (R
n) is defined

as the space of all functions f ∈ C∞(Rn) satisfying the condition

(1.8) sup
x∈Rn

sup
α,β∈Nn

A−|α|B−|β|(α!)−θ(β!)−s|xβ∂αx f(x)| <∞

for some positive constants A,B independent of α, β, or the equivalent condition

(1.9) sup
x∈Rn

sup
α∈Nn

C−|α|(α!)−θeǫ|x|
1
s |∂αx f(x)| <∞

for some positive C, ǫ. This space has been introduced in the book [24]. Later on, a projective
version, denoted by Σθ

s(R
n), has been defined by assuming (1.9) to hold for every C, ǫ > 0,

cf. [36]. Functional properties and different characterizations of these spaces and of their dual
spaces were then studied in [17, 32, 36, 37]. Comparing (1.8) with (1.3) we notice that Sθ

s (R
n)

is a subset of γθ(Rn) with an additional condition on the behavior at infinity. These spaces
possess convenient properties for what concerns the action of Fourier transform and this makes
them a suitable functional setting for pseudodifferential operators of infinite order, namely
with symbols a(x, ξ) admitting an exponential growth at infinity. Thanks to these properties,
Gelfand-Shilov spaces have been employed in the study of the Cauchy problem for hyperbolic
equations, cf. [8, 13, 14]. More recently, some papers treating Schrödinger equations with real
valued coefficients in these spaces appeared, see [16, 21]. In the case of lower order terms with
complex coefficients, the choice of Cauchy data in Gelfand-Shilov spaces intersects another field
of investigation, namely the study of the smoothing effect produced by exponential decay of
the data on the Gevrey regularity of the solution to the Schrödinger equation, see [28, 31, 34].
The aim and the method used in the latter works is considerably different from ours since the
authors approach the problem (1.1) from a microlocal point of view by use of wave front sets
and their results are formulated as pointwise statements with respect to t > 0. No global energy
estimates on [0, T ] appear in the above mentioned works.

The main goal in this paper is to derive such estimates and to identify a functional setting
in which the Cauchy problem (1.1) is well posed. With this purpose, we need to consider other
Gelfand-Shilov type spaces, namely considering functions which are Gevrey regular but may
grow exponentially at infinity, that is admitting (1.9) to hold for negative ǫ. In fact, pointwise
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estimates of u(t, x) given in [28] for t > 0 show that the solution may present an exponential
growth as |x| → ∞. In order to introduce these new spaces and to derive energy estimates in
this new functional setting, it is convenient to introduce a suitable scale of related weighted
Sobolev spaces. Namely, fixed s > 1, θ > 1, m = (m1, m2) ∈ R

2, ρ = (ρ1, ρ2) ∈ R
2, we set

Hm
ρ,s,θ(R

n) =
{
u ∈ S

′(Rn)| ‖u‖Hm
ρ,s,θ

:= ‖Πm,ρ,s,θu‖ <∞
}
,

where Πm,ρ,s,θ denotes the operator

(1.10) Πm,ρ,s,θ = 〈·〉m2〈D〉m1 exp(ρ2〈·〉1/s) exp(ρ1〈D〉1/θ).
The spaces Hm

ρ,s,θ(R
n) are Hilbert spaces endowed with the inner product (·, ·)Hm

ρ,s,θ
. Notice that

for ρ = (0, 0) they reduce to the Sobolev spaces Hm(Rn) defined by (1.4). Moreover, we have
that Hm

ρ,s,θ(R
n) ⊂ Hm′

ρ′,s′,θ′(R
n) if s ≤ s′, θ ≤ θ′, mj ≥ m′

j , ρj ≥ ρ′j , j = 1, 2. By Riesz theorem the
dual space ((Hm

ρ,s,θ(R
n))′ coincides with H−m

−ρ,s,θ(R
n) for every m, ρ ∈ R

2, s > 1, θ > 1. Notice
that we have

Sθ
s (R

n) =
⋃

ρ∈R2

ρj>0,j=1,2

Hm
ρ,s,θ(R

n) and Σθ
s(R

n) =
⋂

ρj>0,j=1,2

Hm
ρ,s,θ(R

n)

for all m ∈ R
2.

Now we can also introduce the spaces

S̃θ
s (R

n) =
⋃

ρ1>0,ρ2∈R

Hm
ρ,s,θ(R

n)

and
Σ̃θ

s(R
n) =

⋂

ρ1>0,ρ2∈R

Hm
ρ,s,θ(R

n).

Given these preliminaries, the main result of the paper reads as follows.

Theorem 1.1. Let s0 > 1, σ ∈ (0, 1) such that s0 < 1/(1 − σ) and let P (t, x, ∂t, ∂x) be an
operator of the form (1.2) with aj and b continuous with respect to t and satisfying for all
(t, x) ∈ [0, T ]× R

n, β ∈ N
n and 1 ≤ j ≤ n the following conditions:

|∂βx (Im aj)(t, x)| ≤ C |β|+1β!s0〈x〉−σ−|β|,(1.11)

|∂βx (Re aj)(t, x)| ≤ C |β|+1β!s0〈x〉1−σ−|β|(1.12)

|∂βx b(t, x)| ≤ C |β|+1β!s0〈x〉1−σ−|β|,(1.13)

for some positive constant C independent of β. Let moreover f ∈ C([0, T ];Hm
ρ,s,θ(R

n)) and

g ∈ Hm
ρ,s,θ(R

n) for some s ∈ (s0, 1/(1 − σ)), θ > s0 and ρ = (ρ1, ρ2), m = (m1, m2) ∈ R
2.

Then there exists δ̄ = δ̄(s, ρ2) > 0 such that the Cauchy problem (1.1) admits a unique solution
u ∈ C([0, T ];Hm

(ρ1,ρ2−δ̄),s,θ
(Rn)) which satisfies:

(1.14) ‖u(t)‖2Hm
(ρ1,ρ2−δ̄),s,θ

≤ Cs

(
‖g‖2Hm

ρ,s,θ
+

∫ t

0

‖f(τ)‖2Hm
ρ,s,θ

dτ

)
,

for t ∈ [0, T ] and for some Cs > 0. In particular, the Cauchy problem (1.1) is well posed in

S̃θ
s (R

n) and in Σ̃θ
s(R

n).

Remark 1.2. We notice that the loss δ̄ depends in general on s and on ρ2 whereas it is inde-
pendent of θ and ρ1. This means that we obtain a solution with the same (Gevrey) regularity as
the initial data but with a worse behavior at infinity. In particular, as it will be clear from the
proof in Section 4, in general ρ2 − δ̄ may be negative, which means that the solution may admit
an exponential growth for |x| → ∞ even if the data decay to 0 exponentially. This phenomenon
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had been already observed in [28, 31]. We also notice that, thanks to the exponential decay of
the data, we do not have any loss of Gevrey regularity as in [19, 20, 29]. Moreover, we stress
the fact that the coefficients of the lower order terms in our paper are not uniformly bounded as
in [19, 20, 29] but they can admit an algebraic growth in x; on the other hand, in order to use
the SG calculus, we need to assume also some conditions on the behavior of the derivatives of
aj and b, which however are quite natural.

Remark 1.3. By the technique used in the present paper we can show that the result of Theorem
1.1 still holds in the critical case s = 1/(1 − σ), but only locally in time, that is the solution
u(t, x) satisfiying (1.14) exists in general only on a small enough subinterval [0, T ∗] ⊆ [0, T ],
see Remark 4.2 below for further details.

Remark 1.4. The modification of the behavior at infinity of the solution stated in Theorem 1.1
is not only a consequence of the method used; in Section 5 of the present paper we give some
examples of solutions to (1.1) which really present a loss of decay or an increase of growth with
respect to the data f, g. The same examples show that the critical threshold s = 1/(1 − σ) in
Theorem 1.1 is sharp.

Summing up, Theorem 1.1 evidentiates a new phenomenon occurring in the Cauchy problem
for Schrödinger-type equations which is alternative to the loss of regularity found in the previous
literature, cf. [19, 20, 29], and which appears when we fix precise assumptions on the behavior
at infinity of the Cauchy data. It would be interesting to inquire if it is possible to obtain
intermediate results between Theorem 1.1 and the result in [29, Theorem 1.1], that is a solution
which presents a loss in the spaces Hm

(ρ1,ρ2),s,θ
(Rn) both with respect to ρ1 and ρ2. At present

this issue remains a challenging open problem for the authors.
The paper is organized as follows. In Section 2 we present some aspects of the theory of

Gelfand-Shilov spaces and of pseudodifferential operators of infinite order. We stress the fact
that the specific calculus for these operators is new and interesting per se. Nevertheless, in
order to address the reader as soon as possible to the proof of Theorem 1.1, we decided to
postpone and detail the calculus in an Appendix at the end of the paper. In Section 3 we
introduce the change of variable needed to reduce the Cauchy problem (1.1) to a new problem
for which we can derive an energy estimate in Section 4. From this we can go back to our
original problem and prove Theorem 1.1. The paper is completed by a discussion of the critical
case s = 1/(1 − σ) in Remark 4.2 and by Section 5, where we give explicit examples showing
the phenomena stated in Theorem 1.1 and we discuss the optimality of the results.

2. Function spaces and pseudodifferential operators of infi-

nite order

In the next sections we will need some continuity properties and composition theorems for
pseudodifferential operators of infinite order. In this section we only state the crucial properties
and the theorems that we need in Section 4. The proofs of these technical statements are
reported in the Appendix at the end of the paper, where we detail the complete calculus.
In the following, given a Hilbert space H , we shall denote by (·, ·)H and by ‖ · ‖H the inner
product and the corresponding norm on H . We will occasionally use the notation e1(1, 0),
e2 = (0, 1) for the vectors of the canonical basis of R2.

2.1. Function spaces. Before introducing pseudodifferential operators of infinite order, we
recall some basic properties of Gelfand-Shilov spaces and of the Sobolev spaces Hm

ρ,s,θ(R
n)
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defined in the Introduction. First of all we observe that, fixed s > 0, θ > 0, A > 0, B > 0 we
denote by Sθ,A

s,B (R
n) the Banach space of all functions f ∈ C∞(Rn) such that

(2.1) ‖f‖s,θ,A,B := sup
α,β∈Nn

sup
x∈Rn

|xβ∂αf(x)|
A|α|B|β|(α!)θ(β!)s

<∞

endowed with the norm ‖ · ‖s,θ,A,B. We have the following relations

Sθ
s (R

n) =
⋃

A>0,B>0

Sθ,A
s,B (R

n), Σθ
s(R

n) =
⋂

A>0,B>0

Sθ,A
s,B (R

n).

It is immediate to observe that the following inclusions hold:

Σθ
s(R

n) →֒ Sθ
s (R

n) →֒ Σθ+ε
s+ε(R

n)

(Σθ+ε
s+ε)

′(Rn) →֒ (Sθ
s )

′(Rn) →֒ (Σθ
s)

′(Rn)

for every ε > 0. In the sequel of the paper we shall need to consider two other Gelfand-Shilov
spaces whose elements satisfy intermediate estimates between those of Σθ

s(R
n) and those of

Sθ
s (R

n). These spaces do not appear in the main Theorem 1.1 but are instrumental to set up
the calculus for our pseudodifferential operators. Namely, we set

S
θ
s (R

n) =
⋃

A>0

⋂

B>0

Sθ,A
s,B (R

n)

and
S̃

θ
s (R

n) =
⋂

A>0

⋃

B>0

Sθ,A
s,B (R

n).

In terms of exponential estimates (1.9), the elements of S θ
s (R

n) (resp. S̃ θ
s (R

n)) satisfy (1.9)
for some C > 0 and for every ǫ > 0 (resp. for some ǫ > 0 and for every C > 0). We also observe
that

Σθ
s(R

n) ⊂ S
θ
s (R

n) ⊂ Sθ
s (R

n)

and
Σθ

s(R
n) ⊂ S̃

θ
s (R

n) ⊂ Sθ
s (R

n).

According to their definition the spaces S̃ θ
s (R

n) and S θ
s (R

n) can be equipped with a natural
topology starting from the Banach spaces Sθ,A

s,B (R
n) and considering inductive limit with respect

to one of the constants A or B and the projective limit with respect to the other or viceversa.
In the sequel we shall assume s > 1, θ > 1 since all our results hold only under this condition.
In the following we shall denote by (Sθ

s )
′(Rn), (Σθ

s)
′(Rn), (S θ

s )
′(Rn), (S̃ θ

s )
′(Rn) the dual spaces

of Sθ
s (R

n), Σθ
s(R

n), S θ
s (R

n), S̃ θ
s (R

n).
The spaces S θ

s (R
n) and S̃ θ

s (R
n) can also be expressed in terms of the Sobolev spaces

Hm
ρ,s,θ(R

n). Namely, denoting ρ = (ρ1, ρ2) we have:

S
θ
s (R

n) =
⋃

ρ1>0

⋂

ρ2>0

Hm
ρ,s,θ(R

n),

S̃
θ
s (R

n) =
⋂

ρ1>0

⋃

ρ2>0

Hm
ρ,s,θ(R

n)

for every m ∈ R
2. Concerning the action of Fourier transform F we have the following isomor-

phisms:
F : Sθ

s (R
n) → Ss

θ (R
n),

F : Σθ
s(R

n) → Σs
θ(R

n),

F : S
θ
s (R

n) → S̃
s
θ (R

n),
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F : S̃
θ
s (R

n) → S
s
θ (R

n)

and analogous mapping properties on the dual spaces. Moreover F maps continuouslyHm
ρ,s,θ(R

n)

into Hm′

ρ′,θ,s(R
n) where m′ = (m2, m1) and ρ′ = (ρ2, ρ1).

2.2. Pseudodifferential operators of infinite order.

Definition 2.1. Fixed C > 0, c > 0, let µ, ν, s, τ ∈ R such that 1 < µ ≤ s and ν > 1. We shall
denote by SG

τ,∞
µ,ν,s(R

2n;C, c) the Banach space of all functions a(x, ξ) ∈ C∞(R2n) satisfying the
following estimates:

(2.2) sup
α,β∈Nn

sup
(x,ξ)∈R2n

C−|α|−|β|(α!)−µ(β!)−ν〈ξ〉−τ+|α|〈x〉|β| exp
[
−c(|x| 1s )

] ∣∣∂αξ ∂βxa(x, ξ)
∣∣ < +∞.

We set SG
τ,∞
µ,ν,s(R

2n) = lim
−→

C,c→∞

SG
τ,∞
µ,ν,s(R

2n;C, c) endowed with the inductive limit topology.

In the following we shall also consider symbols with finite orders.

Definition 2.2. Fixed C > 0, m = (m1, m2) ∈ R
2, we shall denote by SG

m
µ,ν(R

2n;C) the

Banach space of all functions a(x, ξ) ∈ C∞(R2n) satisfying the following estimates:

(2.3) sup
α,β∈Nn

sup
(x,ξ)∈R2n

C−|α|−|β|(α!)−µ(β!)−ν〈ξ〉−m1+|α|〈x〉−m2+|β|
∣∣∂αξ ∂βxa(x, ξ)

∣∣ < +∞

and set SG
m
µ,ν(R

2n) = lim
−→

C→∞

SG
m
µ,ν(R

2n;C).

Obviously we have SGm
µ,ν(R

2n) ⊂ SGm1,∞
µ,ν,s (R2n) for every s > 1. In the case µ = ν, we shall

denote by SGτ,∞
µ,s (R

2n) and SGm
µ (R

2n) the classes SGτ,∞
µ,µ,s(R

2n) and SGτ,∞
µ,µ,s(R

2n) respectively.

For a symbol a ∈ SGτ,∞
µ,ν,s(R

2n) we can consider the pseudodifferential operator

(2.4) a(x,D)u(x) =

∫

Rn

ei〈x,ξ〉a(x, ξ)û(ξ) d−ξ, u ∈ S (Rn),

where we denote d−ξ = (2π)−ndξ and where 〈 , 〉 stands for the scalar product in R
n.

The first step is to analyse the continuity properties of pseudodifferential operators on the
infinite order Sobolev spaces defined above. First of all, we recall that any operator of the
form (2.4) with symbol in SGm′

µ,ν(R
2n) is continuous on S (Rn) and it extends to a continuous

map on S ′(Rn) and from Hm(Rn) into Hm−m′

(Rn) for every m ∈ R
2, cf. [22,35]. Moreover, if

a ∈ SGm′

µ,ν(R
2n), then a(x,D) is continuous from Hm

ρ,s,θ(R
n) to Hm−m′

ρ,s,θ (Rn) for every m, ρ ∈ R
2

and if min{s, θ} > µ + ν − 1, cf. Theorem A.18. Concerning operators of infinite order, we
have the following result, see the Appendix for the proof.

Proposition 2.3. Let µ, ν, τ, s ∈ R with 1 < µ < s, ν > 1 and let a ∈ SG
τ,∞
µ,ν,s(R

2n). Then

a(x,D) is linear and continuous on S θ
s (R

n) and it extends to a continuous map on (S θ
s )

′(Rn)
for every θ ≥ ν.

Apart from these general results, in the following we shall focus on operators with symbol
eλ(x,ξ), that is

(2.5) eλ(x,D)u(x) =

∫

Rn

ei〈x,ξ〉eλ(x,ξ)û(ξ)d−ξ

for some real valued symbol λ ∈ SG(0,1/s)
µ (R2n). By Proposition A.3 we have eλ(x,ξ) ∈ SG0,∞

µ (R2n).
We have the following result, see the Appendix for the proof.
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Proposition 2.4. Let µ, s, θ ∈ R such that µ > 1,min{s, θ} > 2µ−1, and let λ ∈ SG
(0,1/s)
µ (R2n).

Then, for every ρ,m ∈ R
2, the operator eλ(x,D) is continuous from Hm

ρ,s,θ(R
n) into Hm

ρ−δe2,s,θ
(Rn)

for every δ > C(λ) := sup
(x,ξ)∈R2n

λ(x,ξ)

〈x〉1/s
.

Under slightly stronger assumptions on λ we shall prove in the sequel that eλ(x,D) is invert-
ible and express the inverse in terms of operators of the form

(2.6) Re−λu(x) =

∫∫
ei〈x−y,ξ〉e−λ(y,ξ)u(y) dyd−ξ,

usually called reverse operators, cf. [29, 30]) and defined as oscillatory integrals. It is then
convenient to introduce a class of operators including both (2.5) and (2.6). Details on this class
are again postponed to the Appendix at the end of the paper.

Definition 2.5. Let µ, ν, s, τ ∈ R such that 1 < µ ≤ s, ν > 1. We denote by Πτ,∞
µ,ν,s(R

3n) the

space of all functions a(x, y, ξ) ∈ C∞(R3n) such that
∣∣∂αξ ∂βx∂γya(x, y, ξ)

∣∣ ≤ C |α+β+γ|+1(α!)−µ(β!γ!)−ν〈ξ〉τ−|α|〈(x, y)〉−|β+γ|〈x− y〉|β+γ|ec(|x|
1
s +|y|

1
s )

for every α, β, γ ∈ N
n, (x, y, ξ) ∈ R

3n and for some positive constants C, c independent of α, β, γ,

where 〈(x, y)〉 =
(
1 +

∑n
j=1(x

2
j + y2j )

)1/2
. We write Πτ,∞

ν,s (R3n) for Πτ,∞
ν,ν,s(R

3n).

It is easy to show that if a ∈ Πτ,∞
µ,ν,s(R

3n), then the function p(x, ξ) = a(x, x, ξ) ∈ SGτ,∞
µ,ν,s(R

2n).

On the other hand, if p ∈ SGτ,∞
µ,ν,s(R

2n), then for every t ∈ [0, 1] the function a(x, y, ξ) =

p((1− t)x+ ty, ξ) belongs to Πτ,∞
µ,ν,s(R

3n).
To every a ∈ Πτ,∞

µ,ν,s(R
3n) it is associated an operator of the form

Au(x) =

∫∫
ei〈x−y,ξ〉a(x, y, ξ)u(y) dyd−ξ, u ∈ S

θ
s (R

n),

defined as standard as an oscillatory integral, namely:

(2.7) Au(x) = lim
δ→0

∫∫
ei〈x−y,ξ〉χ(δy, δξ)a(x, y, ξ)u(y) dyd−ξ, u ∈ S

θ
s (R

n),

for some χ ∈ Sκ
κ (R

2n), with χ(0, 0) = 1, κ = min{µ, ν}.
By Theorem A.11 and Proposition 2.4 A acts continuously on S θ

s (R
n) and on (S θ

s )
′(Rn) for

µ+ ν − 1 < min{s, θ}. This fact applies in particular to the operator Reλ if λ ∈ SG(0,1/s)
µ (R2n).

As a matter of fact, in this case, by Proposition A.3, the amplitude eλ(y,ξ) is an element of
Π0,∞

µ,s (R
3n). Moreover, Reλ is in fact the L2-adjoint of eλ(x,D). Hence it maps continuously

Hm
ρ,s,θ(R

n) into Hm
ρ−δe2,s,θ

(Rn) if min{s, θ} > 2µ− 1 and δ > C(λ).

We observe that the classes SGτ,∞
µ,ν,s(R

2n),SGm
µ,ν(R

2n),Πτ,∞
µ,ν,s(R

3n) can be equivalently defined
by replacing the weight functions 〈ξ〉 by 〈ξ〉h = (h2 + |ξ|2)1/2 for some fixed h ≥ 1. All the
previous results can be reformulated in the new notation since it does not modify the classes.
However, under this small modification, we can prove the following composition result, which in
turn, choosing h large enough, implies the invertibility of the operators eλ(x,D) as a by-product.

Proposition 2.6. Let λ ∈ C∞(R2n) satisfy the condition

(2.8) |∂αξ ∂βxλ(x, ξ)| ≤ C |α+β|+1(α!β!)µ〈ξ〉−|α|
h 〈x〉 1

s
−|β|

with µ > 1, s > 2µ− 1. Then we have

eλ(x,D) ◦R e−λ = I + r1(x,D),
Re−λ ◦ eλ(x,D) = I + r2(x,D),
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where the symbols r1, r2 satisfy for every γ, δ ∈ N
n, (x, ξ) ∈ R

2n

(2.9) |∂γξ ∂δxrk(x, ξ)| ≤ Cγδ〈ξ〉−1−|γ|
h 〈x〉−1+ 1

s
−|δ|, k = 1, 2.

In particular, r1, r2 ∈ SG
(0,0)(R2n).

From (2.9), we deduce in particular that

|∂γξ ∂δxrk(x, ξ)| ≤ Cγδh
−1〈ξ〉−|γ|

h 〈x〉−|δ|, k = 1, 2.

Hence rk(x,D), k = 1, 2 are bounded operators on L2(Rn) with norm ‖rk(·, D)‖ which can be
taken as small as we want by enlarging h. Then it turns out that if h ≥ ho with ho sufficiently
large, the operator eλ(x,D) is invertible with inverse given in terms of a suitable Neumann
series.

The previous result can be generalized to the following conjugation theorem which will play
a crucial role in the sequel.

Theorem 2.7. Let p ∈ SG
m
µ,ν(R

2n) and λ satisfying the condition (2.8) with s > µ + ν − 1.
Then, there exists ho ≥ 1 such that if h ≥ ho, we have

(2.10) eλ(x,D)p(x,D)(eλ(x,D))−1 = p(x,D) + q(x,D) + r(x,D) + r0(x,D),

where r ∈ SG
(m1−2,m2−2(1−1/s))
µ,ν (R2n), r0 ∈ Sµ+ν−1(R

2n) and

(2.11) q(x, ξ) =
∑

|α|=1

∂αξ p(x, ξ)(i∂x)
αΛ(x, ξ) +

∑

|β|=1

Dβ
xp(x, ξ)∂

β
ξ Λ(x, ξ)

belongs to SG
(m1−1,m2−1+1/s)
µ,ν (R2n).

3. Change of variable

Theorem 2.7 is needed to derive energy estimates for a possible solution u of (1.1) which cannot
be obtained directly. In fact, looking for an energy estimate in L2 for u and arguing as standard,
we have by (1.2):

d

dt
‖u(t)‖2 = 2Re〈 d

dt
u(t), u(t)〉

= 2Re〈f(t), u(t)〉+ 2Re〈(i∆x)u(t), u(t)〉 − 2Re〈A(t)u(t), u(t)〉
= 2Re〈f(t), u(t)〉 − 〈(A+ A∗)(t)u(t), u(t)〉.

Now it is easy to notice that the operator (A+A∗)(t, x,D) is not L2-bounded since its principal
symbol is −2

∑n
j=1 Im aj(t, x)ξj ∈ SG(1,−σ)(R2n). The idea is then to perform first a change of

variable of the form

v(t, x) = eΛ(t, x,D)u(t, x),(3.1)

where eΛ(t, x,D) denotes a pseudodifferential operator with symbol eΛ(t,x,ξ) and eΛ(t, x,D) is
invertible with inverse (eΛ(t, x,D))−1. In this way we are reduced to consider the auxiliary
Cauchy problem

{
PΛ(t, x,Dt, Dx)v(t, x) = eΛ(t, x,D)f(t, x) =: fΛ(t, x)

v(0, x) = eΛ(0, x,D)g(x) =: gΛ(x)
(3.2)

in the unknown v, where

PΛ := eΛ(t, x,D)P (t, x, ∂t, ∂x)(e
Λ(t, x,D))−1.
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We shall take Λ(t, x, ξ) of the form

(3.3) Λ(t, x, ξ) = k(t)〈x〉1−σ
h + λ(x, ξ)

for a suitable symbol λ ∈ SG(0,1/s)
µ (R2n), for h large enough, and for some positive non-

increasing function k ∈ C1[0, T ] which will be chosen later on. Our aim is to prove that,
choosing properly λ(x, ξ) and k(t) we may have

(3.4) PΛ = eΛ(t, x,D)P (t, x, ∂t, ∂x)(e
Λ(t, x,D))−1(x,D) = ∂t − i∆x + AΛ(t, x,D) + r̃0(t, x,D)

where r̃0 is an operator of order (0, 0) and AΛ is an operator (of order (1, 1/s)) such that AΛ+A
∗
Λ

is a positive operator on L2(Rn). This would imply that the Cauchy problem (3.2) is L2−well
posed, since the corresponding energy estimate can be obtained from the inequality

d

dt
‖v(t)‖2 = 2Re〈fΛ(t), v(t)〉 − 〈(AΛ + A∗

Λ)(t)v(t), v(t)〉 − 2Re〈r̃0(t)v(t), v(t)〉(3.5)

≤ C
(
‖fΛ(t)‖2 + ‖v(t)‖2

)

that now works for a positive constant C.
We observe that, taking Λ of the form (3.3), we have

∂t − i∆x = (∂t − i∆x)e
Λ(eΛ)−1 = (k′(t)〈x〉1−σ

h eΛ + eΛ∂t − i∆xe
Λ)(eΛ)−1

but

∆xe
Λ =

n∑

j=1

∂xj
(eΛ∂xj

Λ + eΛ∂xj
) =

n∑

j=1

(
eΛ(∂xj

Λ)2 + eΛ∂2xj
Λ + 2eΛ(∂xj

Λ)∂xj

)
+ eΛ∆x,

so that we have

∂t − i∆x = k′(t)〈x〉1−σ
h + eΛ

(
∂t − i∆x − i

n∑

j=1

(
(∂xj

Λ)2 + ∂2xj
Λ+ 2(∂xj

Λ)∂xj

))
(eΛ)−1

and so

eΛ (∂t − i∆x) (e
Λ)−1 = ∂t − i∆x − k′(t)〈x〉1−σ

h + ieΛ
n∑

j=1

(
(∂xj

Λ)2 + ∂2xj
Λ + 2(∂xj

Λ)∂xj

)
(eΛ)−1

= ∂t − i∆x − k′(t)〈x〉1−σ
h − 2

n∑

j=1

(∂xj
Λ)Dxj

+ r′0(t, x,D)(3.6)

with r′0(t, x,D) a term of order (0, 0). By Theorem 2.7 the operator PΛ is of the form (3.4) with

(3.7) AΛ := i

n∑

j=1

aj(t, x)Dxj
− 2

n∑

j=1

(∂xj
Λ)Dxj

− k′(t)〈x〉1−σ
h + r(t, x,D) + b(t, x),

where r ∈ C([0, T ],SG(0,1−σ)
µ,s0

(R2n)). The idea is then to choose Λ such that the symbol of the
positive order part of AΛ + A∗

Λ is positive, that is

(3.8) 2

n∑

j=1

(∂xj
Λ)ξj +

n∑

j=1

Im aj(t, x)ξj + k′(t)〈x〉1−σ
h − Re r(t, x, ξ)− Re b(t, x) ≤ 0

so that (3.5) is satisfied by application of the sharp Gårding inequality.

Our idea is to choose λ and k(t) such that the term 2
∑n

j=1(∂xj
Λ)ξj compensates the term∑n

j=1 Im ajξj and k′(t)〈x〉1−σ
h controls the term Re r(t, x, ξ) and Re b(t, x) in order to get (3.8).

This is the reason of the choice (3.3).
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The sequel of this section is devoted to the construction of the function λ(x, ξ). Since the
behavior of Im aj is described in (1.11), to control −

∑n
j=1 Im ajξj it is convenient to look for a

function λ1(x, ξ) such that

n∑

j=1

(∂xj
λ1)ξj = |ξ|g1(x), x ∈ R

n,(3.9)

where g1(x) = M〈x〉−1+1/s with M > 0, h ≥ 1 to be chosen later on. It is easy to check that
the desired function λ1 is given by:

λ1(x, ξ) =

∫ x·ω

0

g1(x− τω)dτ, ω = ξ/|ξ|.(3.10)

As a matter of fact we have

n∑

j=1

(∂xj
λ1)ξj =

n∑

j=1

g1(x− (x · ω)ω)
ξ2j
|ξ| +

n∑

j=1

∫ x·ω

0

∂xj
g1(x− τω)dτ ξj

= |ξ|g1(x− (x · ω)ω) + |ξ|
∫ x·ω

0

n∑

j=1

∂xj
g1(x− τω)

ξj
|ξ|dτ

= |ξ|g1(x− (x · ω)ω)− |ξ|
∫ x·ω

0

d

dτ
(g1(x− τω)) dτ

= |ξ|g1(x− (x · ω)ω)− |ξ|g1(x− (x · ω)ω) + |ξ|g1(x)
= |ξ|g1(x).

The following Lemma 3.1 states the behavior of the derivatives of λ1.

Lemma 3.1. There exists a constant Cs independent of h such that for every α, β ∈ Z
n
+ the

function λ1(x, ξ) defined by (3.10) satisfies the following estimates:

|∂αξ ∂βxλ1(x, ξ)| ≤MC |α|+|β|+1
s α!β!〈x〉 1

s
−|β||ξ|−|α|, (x, ξ) ∈ R,(3.11)

where R = {(x, ξ) ∈ R
2n| |x · ω| ≤ 〈x〉/2}.

Proof. We divide the proof in two steps:
Step 1. We show that for every δ > 0, α, β ∈ Z

n
+, k ∈ N, the function 〈x− tω〉−δ satisfies for

every 0 ≤ |t| ≤ |x · ω| and (x, ξ) ∈ R the following estimate:

|∂αξ ∂βx∂kt 〈x− tω〉−δ| ≤ C
|α|+|β|+k+1
δ α!β!k!〈x〉−δ−|β|−k|ξ|−|α|.(3.12)

We first notice that on R we have

|t| ≤ |x · ω| ⇒ 〈x− tω〉 ≥ 〈x〉/2.(3.13)

Indeed, for |t| ≤ |x ·ω| and on R, the inequality |x| ≤ |x− tω|+ |tω| ≤ |x− tω|+ 〈x〉/2 holds, so
〈x〉2 = h2 + |x|2 ≤ h2 + 2|x− tω|2 + 〈x〉2/2, which gives 〈x〉2/2 ≤ h2 + 2|x− tω|2 ≤ 2〈x− tω〉2,
and so (3.13) holds.

Now, if |α + β|+ k = 0, the estimate (3.12) trivially holds:

|〈x− tω〉−δ| ≤ 2δ〈x〉−δ = Cδ〈x〉−δ.
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Let us suppose so to have (3.12) for every |α + β| + k ≤ ℓ, ℓ ∈ N. To conclude it is sufficient
to check the three following items:

|∂αξ ∂βx∂k+1
t 〈x− tω〉−δ| ≤ C

|α|+|β|+k+2
δ α!β!(k + 1)!|ξ|−|α|〈x〉−δ−|β|−k−1.(3.14)

|∂αξ ∂β+ej
x ∂kt 〈x− tω〉−δ| ≤ C

|α|+|β|+k+2
δ α!(β + ej)!k!|ξ|−|α|〈x〉−δ−|β|−1−k, 1 ≤ j ≤ n,(3.15)

|∂α+ej
ξ ∂βx∂

k
t 〈x− tω〉−δ| ≤ C

|α|+|β|+k+2
δ (α + ej)!β!k!|ξ|−|α|−1〈x〉−δ−|β|−k, 1 ≤ j ≤ n.(3.16)

We first compute

∂t〈x− tω〉−δ = −δ〈x− tω〉−δ−2
n∑

j=1

(xj − tωj)(−ωj) = δ〈x− tω〉−δ−2(x · ω − t)

∂xj
〈x− tω〉−δ = −δ〈x− tω〉−δ−2(xj − tωj)

∂ξj〈x− tω〉−δ = −δ
2
〈x− tω〉−δ−2∂ξj

(
n∑

i=1

(xi − tωi)
2

)
= δt〈x− tω〉−δ−2

n∑

i=1

(xi − tωi)∂ξjωi

= δt〈x− tω〉−δ−2pj(t, x, ξ),

where

pj(t, x, ξ) =

(
(xj − tωj)|ξ|−1 +

n∑

i=1

(xi − tωi)ξi∂ξj |ξ|−1

)
.

Then:

∂αξ ∂
β
x∂

k+1
t 〈x− tω〉−δ = ∂αξ ∂

β
x∂

k
t

(
δ〈x− tω〉−δ−2(x · ω − t)

)

= δ
∑

α1+α2=α

∑

β1+β2=β

(
α

α1

)(
β

β1

)(
∂α1
ξ ∂β1

x ∂
k
t 〈x− tω〉−δ−2

)
∂α2
ξ ∂β2

x (x · ω − t)(3.17)

−δ
(
∂αξ ∂

β
x∂

k−1
t 〈x− tω〉−δ−2

)

where the second term in the right-hand side appears only if k 6= 0. Moreover

∂
α+ej
ξ ∂βx∂

k
t 〈x− tω〉−δ = ∂αξ ∂

β
x∂

k
t

(
δt〈x− tω〉−δ−2pj(t, x, ξ)

)

= δ
∑

α1+α2=α

∑

β1+β2=β

∑

k1+k2=k−1

(
α

α1

)(
β

β1

)(
k

k1

)
∂α1
ξ ∂β1

x ∂
k1
t 〈x− tω〉−δ−2 ·(3.18)

·∂α2
ξ ∂β2

x ∂
k2
t pj(t, x, ξ)

+δt
∑

α1+α2=α

∑

β1+β2=β

∑

k1+k2=k

(
α

α1

)(
β

β1

)(
k

k1

)
∂α1
ξ ∂β1

x ∂
k1
t 〈x− tω〉−δ−2 ·

·∂α2

ξ ∂β2
x ∂

k2
t pj(t, x, ξ),

where the first term in the right-hand side appears only if k 6= 0, and

∂αξ ∂
β+ej
x ∂kt 〈x− tω〉−δ = ∂αξ ∂

β
x∂

k
t

(
−δ〈x− tω〉−δ−2(xj − tωj)

)
,

= −δ
∑

α1+α2=α

∑

β1+β2=β

(
α

α1

)(
β

β1

)
∂α1

ξ ∂β1
x ∂

k
t 〈x− tω〉−δ−2∂α2

ξ ∂β2
x (xj − tωj)(3.19)

+δ
∑

α1+α2=α

(
α

α1

)
∂α1
ξ ∂βx∂

k−1
t 〈x− tω〉−δ−2∂α2

ξ ωj,



A. Ascanelli, M. Cappiello 13

where the second term in the right-hand side appears only if k 6= 0. To estimate (3.17), we
compute for α, β ∈ Z

n
+

∂αξ ∂
β
x (x · ω) =





∂αξ (x · ω) = (x · ξ)∂αξ |ξ|−1 +

n∑

ℓ=1

xℓ∂
α−eℓ,∗
ξ |ξ|−1 β = 0

∂αξ ωj β = ej, j = 1, . . . , n

0 |β| ≥ 2

where the notation ∂α−eℓ,∗ means that the term appears only if αℓ > 0, and we get

|∂αξ ∂βx (x · ω)| ≤ A
|α|+|β|+1
0 |α|!|β|!|x|1−|β||ξ|−|α|.(3.20)

Choosing properly the constant Cs, we easily obtain (3.14) by taking the modulus in (3.17),
making use of formula (3.20), of the inductive assumption, and of the following well known
estimate (cf. [29]):

|∂γ |y|m| ≤ A
|γ|+1
0 |γ|!|y|m−|γ|, y ∈ R

n, n ≥ 1, m ∈ R, γ ∈ Z
n
+.(3.21)

To estimate (3.18) we first notice that

∂αξ ∂
β
x∂

k
t pj(t, x, ξ) =





∂αξ ∂
β
xpj(t, x, ξ) k = 0

∂αξ (−ωj |ξ|−1 − |ξ|∂ξj |ξ|−1) k = 1, β = 0

0 k = 1 and β > 0, or k ≥ 2,

(3.22)

∂αξ ∂
β
x (xj − tωj) =





xj − tωj α = 0, β = 0,

−t∂αξ ωj α > 0, β = 0,

1 α = 0, β = ej,

0 otherwise,

(3.23)

and ∂αξ ωj = ξj∂
α
ξ |ξ|−1 + ∂

α−ej ,∗
ξ |ξ|−1. Then, using again (3.21) we get

|∂αξ ωj| ≤ 2A
|α|+1
0 |α|!|ξ|−|α|, α ∈ Z

n
+, j = 1, · · · , n,(3.24)

|∂αξ ∂βx (xj − tωj)| ≤ A
|α|+|β|+1
0 |α|!|β|!〈x〉1−|β||ξ|−|α|,(3.25)

where in (3.25) we used the fact that |t| ≤ |x · ω| ≤ 〈x〉/2. Now, from (3.22), making use of
(3.21), (3.24) and (3.25), we get, for (x, ξ) ∈ R and |t| ≤ |x · ω|:





|∂αξ pj(t, x, ξ)| ≤ A
|α|+1
0 |α|!(|x|+ |t|)|ξ|−1−|α| ≤ A

|α|+1
0 |α|!〈x〉|ξ|−1−|α|

|∂αξ ∂xk
pj(t, x, ξ)| ≤ A

|α|+1
0 |α|!|ξ|−1−|α|, 1 ≤ k ≤ n

|∂αξ ∂tpj(t, x, ξ)| ≤ A
|α|+1
0 |α|!|ξ|−1−|α|

(3.26)

and ∂αξ ∂
β
x∂

k
t pj = 0 for k = 0 and |β| ≥ 2, for k = 1 and β 6= 0, for k ≥ 2.
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In view of these considerations, if k ≥ 2 we can split (3.18) into

∂
α+ej
ξ ∂βx∂

k
t 〈x− tω〉−δ = δ

(
∂αξ ∂

β
x∂

k−1
t 〈x− tω〉−δ−2

)
pj(t, x, ξ)

+ δ
∑

α1+α2=α,α2 6=0

(
α

α1

)
∂α1
ξ ∂βx∂

k−1
t 〈x− tω〉−δ−2∂α2

ξ pj(t, x, ξ)

+ δβℓ
∑

α1+α2=α,α2 6=0

(
α

α1

) n∑

ℓ=1

∂α1
ξ ∂β−eℓ,∗

x ∂k−1
t 〈x− tω〉−δ−2∂α2

ξ ∂xℓ
pj(t, x, ξ)

+ δ(k − 1)
∑

α1+α2=α

(
α

α1

)
∂α1
ξ ∂βx∂

k−2
t 〈x− tω〉−δ−2∂α2

ξ ∂tpj(t, x, ξ)

+ δt
(
∂αξ ∂

β
x∂

k
t 〈x− tω〉−δ−2

)
pj(t, x, ξ)

+ δt
∑

α1+α2=α,α2 6=0

(
α

α1

)
∂α1

ξ ∂βx∂
k
t 〈x− tω〉−δ−2∂α2

ξ pj(t, x, ξ)

+ δtβℓ
∑

α1+α2=α,α2 6=0

(
α

α1

) n∑

ℓ=1

∂α1

ξ ∂β−eℓ,∗
x ∂kt 〈x− tω〉−δ−2∂α2

ξ ∂xℓ
pj(t, x, ξ)

+ kδt
∑

α1+α2=α

(
α

α1

)
∂α1
ξ ∂βx∂

k−1
t 〈x− tω〉−δ−2∂α2

ξ ∂tpj(t, x, ξ);

by the inductive hypothesis and (3.26), we thus obtain:

|∂α+ej
ξ ∂βx∂

k
t 〈x− tω〉−δ| ≤ δC

|α|+|β|+k
δ α!β!(k − 1)!|ξ|−1−|α|〈x〉−δ−|β|−k

+δ|t|C |α|+|β|+k+1
δ α!β!k!|ξ|−1−|α|〈x〉−δ−1−|β|−k

≤ C
|α|+|β|+k+2
δ (α+ ej)!β!k!|ξ|−1−|α|〈x〉−δ−|β|−k,

that is (3.15) when k ≥ 2. The cases k = 0 and k = 1 can be treated similarly.
Finally, with analogue computations we have:

|∂αξ ∂β+ej
x ∂kt 〈x− tω〉−δ| ≤ δ|∂αξ ∂βx∂kt 〈x− tω〉−δ−2| · |xj − tωj |

+δ
∑

α1+α2=α,α2 6=0

(
α

α1

)
|∂α1

ξ ∂βx∂
k
t 〈x− tω〉−δ−2| · |t| · |∂α2

ξ ωj|

+δ|∂αξ ∂β−ej
x ∂kt 〈x− tω〉−δ−2|

+δk
∑

α1+α2=α

(
α

α1

)
|∂α1

ξ ∂βx∂
k−1
t 〈x− tω〉−δ−2||∂α2

ξ ωj|,

where the last term in the right-hand side appears only if k 6= 0. Then, arguing as before, we
obtain (3.16). Hence (3.12) is proved.

Step 2. Set

H(x, ξ, t) =

∫ t

0

〈x− τω〉1/s−1 dτ.
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We want to estimate the derivatives of the composed function λ1(x, ξ) = H(x, ξ, x · ω). Formal
computations give

∂βx (H(x, ξ, x · ω)) = (∂βxH)(x, ξ, x · ω) +
n∑

j=1

βj(∂
β−ej
x ∂tH)(x, ξ, x · ω)∂xj

(x · ω)

+ · · ·+ (∂
|β|
t H)(x, ξ, x · ω)(∂x1(x · ω))β1 · · · (∂xn(x · ω))βn

=
∑

γ≤β

(
β

γ

)
(∂β−γ

x ∂
|γ|
t H)(x, ξ, x · ω)ωγ1

1 · · ·ωγn
n(3.27)

from which it follows by Leibniz formula that

∂αξ ∂
β
x (H(x, ξ, x · ω)) =

∑

α0+...+αn=α

α!

α0! . . . αn!

∑

δ≤α0

(
α0

δ

)∑

γ≤β

(
β

γ

)
(∂β−γ

x ∂α0−δ
ξ ∂

|γ|+|δ|
t H)(x, ξ, x · ω)

×(∂ξn(x · ω))δ1 · · · (∂ξn(x · ω))δn∂α1
ξ (ωγ1

1 ) · · ·∂αn
ξ (ωγn

n )(3.28)

=
∑

α0+...+αn=α

α!

α0! . . . αn!

∑

γ≤β,δ≤α0
γ+δ 6=0

(
α0

δ

)(
β

γ

)
(∂β−γ

x ∂α0−δ
ξ ∂

|γ|+|δ|−1
t 〈x− tω〉−1+1/s)|t=x·ω

×(∂ξ1(x · ω))δ1 · · · (∂ξn(x · ω))δn∂α1
ξ (ωγ1

1 ) · · ·∂αn
ξ (ωγn

n )

+

∫ x·ω

0

∂βx∂
α
ξ 〈x− τω〉−1+1/s dτ.

Hence the estimate (3.12) follows from the previous estimates. We leave the details to the
reader. �

Lemma 3.1 states that λ1 behaves like a SG symbol of order (0, 1/s) only in the region R.
This leads to introduce a partition of the phase space and to consider in the complementary
region |x · ω| ≥ 〈x〉/2 the function

g2(x, ξ) =M〈x · ω〉−1+1/s(3.29)

and the corresponding λ2(x, ξ) satisfying the condition
n∑

j=1

(∂xj
λ2)ξj = |ξ|g2(x), x ∈ R

n,(3.30)

compare with (3.9). As before we can take

λ2(x, ξ) :=

∫ x·ω

0

g2(x− τω, ξ)dτ.(3.31)

Notice that

λ2(x, ξ) =

∫ x·ω

0

M〈(x− τω) · ω〉−1+1/sdτ(3.32)

=

∫ x·ω

0

M〈x · ω − τ〉−1+1/sdτ =

∫ x·ω

0

M〈z〉−1+1/s dz.

In the next Lemma we derive suitable estimates for the function λ2 on the complementary
set of R.

Lemma 3.2. There exists a positive constant Cs independent of h such that the function λ2(x, ξ)
defined by (3.29), (3.31) satisfies for every α, β ∈ Z

n
+ the following estimates

|∂αξ ∂βxλ2(x, ξ)| ≤MC |α|+|β|+1
s α!β!〈x〉1/s−|β||ξ|−|α|, (x, ξ) ∈ R

2n \ R.(3.33)
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Proof. We work again by induction on |α+β|. If |α+β| = 0 the assertion is a direct consequence
of (3.32): |λ2(x, ξ)| ≤ MCs〈x · ω〉1/s ≤ MCs〈x〉1/s since 1/s > 0. Now, suppose that (3.33)
holds for every |α|+ |β| ≤ ℓ. We have to check for every 1 ≤ j ≤ n:

|∂α+ej
ξ ∂βxλ2(x, ξ)| ≤MC |α|+|β|+2

s (α + ej)!β!〈x〉1/s−|β||ξ|−|α|−1(3.34)

|∂αξ ∂β+ej
x λ2(x, ξ)| ≤MC |α|+|β|+2

s α!(β + ej)!〈x〉−1+1/s−|β||ξ|−|α|.(3.35)

We have:

∂
α+ej
ξ ∂βxλ2(x, ξ) = ∂αξ ∂

β
x∂ξj

∫ x·ω

0

M〈z〉−1+1/s dz = ∂αξ ∂
β
x

(
M〈x · ω〉−1+1/s · ∂ξj (x · ω)

)
(3.36)

=M
∑

α1+α2=α

∑

β1+β2=β

(
α

α1

)(
β

β1

)
∂α1

ξ ∂β1
x 〈x · ω〉−1+1/s∂

α2+ej
ξ ∂β2

x (x · ω)

and

∂αξ ∂
β+ej
x λ2(x, ξ) = ∂αξ ∂

β
x∂xj

∫ x·ω

0

M〈w〉−1+1/sdw = ∂αξ ∂
β
x

(
M〈x · ω〉−1+1/s · ∂xj

(x · ω)
)

(3.37)

= ∂αξ ∂
β
x

(
M〈x · ω〉−1+1/s · ωj

)

=M
∑

α1+α2=α

(
α

α1

)
∂α1
ξ ∂βx 〈x · ω〉−1+1/s∂α2

ξ (ωj).

To give estimates of the derivatives here above, we need to show that for every α, β ∈ Z
n
+ the

following formula holds:

|∂αξ ∂βx 〈x · ω〉−1+1/s| ≤ CsA
|α|+|β|
0 α!β!〈x · ω〉−1+1/s−|β||ξ|−|α|, (x, ξ) ∈ R

2n \ R.(3.38)

We do that by induction: if |α + β| = 0, (3.38) is true. If it holds for every (α, β) with
|α| + |β| ≤ ℓ, we have to show that it holds also for the pairs (α + ej , β) and (α, β + ej),
1 ≤ j ≤ n. Applying Leibniz formula and taking into account the fact that ∂βx (x · ω) = 0 for
|β| > 2, we obtain:

∂
α+ej
ξ ∂βx 〈x · ω〉−1+1/s = ∂αξ ∂

β
x

((
−1 +

1

s

)
〈x · ω〉−3+1/s(x · ω)∂ξj(x · ω)

)

=

(
−1 +

1

s

) ∑

α1+α2+α3=α

∑

β1+β2+β3=β

|β2+β3|≤2

α!β!

α1!α2!α3!β1!β2!β3!
·

·∂α1

ξ ∂β1
x 〈x · ω〉−3−1/s∂α2

ξ ∂β2
x (x · ω)∂α3+ej

ξ ∂β3
x (x · ω)(3.39)

∂αξ ∂
β+ej
x 〈x · ω〉−1+1/s = ∂αξ ∂

β
x

((
−1 +

1

s

)
〈x · ω〉1/s−3(x · ω)ωj

)

= −
(
−1 +

1

s

) ∑

α1+α2+α3=α

∑

β1+β2=β

|β2|≤1

α!β!

α1!α2!α3!β1!β2!
·(3.40)

·∂α1
ξ ∂β1

x 〈x · ω〉1/s−3∂α2
ξ ∂β2

x (x · ω)∂α3
ξ ωj.
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From the inductive assumption (3.38), using (3.20) and (3.24) we get respectively

|∂α+ej
ξ ∂βx 〈x · ω〉−1+1/s| ≤ CsA

|α|+|β|+3
0 (α+ ej)!β!|ξ|−|α|−1

∑

β1+β2+β3=β

|β2+β3|≤2

〈x · ω〉1/s−3−|β1||x|2−|β2+β3|(3.41)

|∂αξ ∂β+ej
x 〈x · ω〉−1+1/s| ≤ CsA

|α|+|β|+3
0 α!(β + ej)!|ξ|−|α|

∑

β1+β2=β

|β2|≤1

〈x · ω〉1/s−3−|β1||x|1−|β2|.(3.42)

Now, in (3.41), since |β2 + β3| ≤ 2, then |x|2−|β2+β3| ≤ 4|x · ω|2−|β2+β3| ≤ 4〈x · ω〉2−|β2+β3|, on
R

2n \ R. From (3.41) we get so

|∂α+ej
ξ ∂βx 〈x · ω〉−1+1/s| ≤ CsA

|α|+|β|+1
0 (α + ej)!β!|ξ|−|α|−1〈x · ω〉−1+1/s−|β|.

Similarly, in (3.42) since |β2| ≤ 1, then |x|1−|β2| ≤ 2|x · ω|1−|β2| ≤ 2〈x · ω〉1−|β2| on R
n \R. From

(3.42) we then get

|∂αξ ∂β+ej
x 〈x · ω〉−1+1/s| ≤ CsA

|α|+|β|+1
0 α!(β + ej)!|ξ|−|α|〈x · ω〉1/s−2−|β|.

Formula (3.38) is completely proved by induction.
Coming now back to (3.36), using (3.38) and (3.20), noting that whenever |β2| ≥ 2 the corre-
sponding term in (3.36) is zero, we get

|∂α+ej
ξ ∂βxλ2(x, ξ)| ≤M

∑

α1+α2=α

∑

β1+β2=β

(α + ej)!β!CsA
|α|+|β|+2
0 〈x · ω〉1/s−1−|β1||x|1−|β2||ξ|−|α|−1

≤M(α + ej)!β!CsA
|α|+|β|+2
0 〈x · ω〉1/s−|β||ξ|−|α|−1,

that is (3.34). Using (3.38) and (3.24), from (3.37) we get:

|∂αξ ∂β+ej
x λ2(x, ξ)| ≤Mα!(β + ej)!CsA

|α|+|β|+2
0 〈x · ω〉1/s−1−|β||ξ|−|α|,

and then (3.35) by definition of R2n \ R.
�

Taking into account the results of Lemmas 3.1 and 3.2 we can now define

λ̃(x, ξ) = −λ1(x, ξ)χ̃(x, ξ)− λ2(x, ξ)(1− χ̃(x, ξ)), χ̃(x, ξ) = χ

(
2x · ω
〈x〉

)
,(3.43)

where χ ∈ C∞
c (R) is such that 0 ≤ χ(t) ≤ 1, tχ′(t) ≤ 0, χ(t) = 1 for |t| ≤ 1/2, χ(t) = 0 for

|t| ≥ 1, and |χ(k)(t)| ≤ Ak+1
0 k!µ for some µ > 1 to be chosen later on.

Lemma 3.3. The function χ̃ defined in (3.43) satisfies the following estimate:

|∂αξ ∂βx χ̃(x, ξ)| ≤ C |α|+|β|+1|α + β|!ν〈x〉−|β||ξ|−|α|, (x, ξ) ∈ R
2n.(3.44)

Proof. The proof follows by application of the tha Faà di Bruno formula to the composed
function χ(η(x, ξ)) with η(x, ξ) = 2(x · ω)〈x〉−1, and with the help of (3.20), (3.21) and of the
estimate

|∂γ〈y〉m| ≤ A
|γ|+1
0 |γ|!〈y〉m−|γ|, y ∈ R

n, m ∈ R, γ ∈ Z
n
+,(3.45)

for some A0 independent of γ and h. (cf. [29]). We leave the details to the reader. �

As an immediate consequence of Lemmas 3.1, 3.2, 3.3 we obtain the following result. The
details of the proof are left to the reader.
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Lemma 3.4. There exists a constant Cs independent of h such that the function λ̃(x, ξ) defined
in (3.43) satisfies the following estimate for every α, β ∈ Z

n
+:

|∂αξ ∂βx λ̃(x, ξ)| ≤MC |α|+|β|+1
s |α + β|!µ〈x〉1/s−|β||ξ|−|α|.(3.46)

for every (x, ξ) ∈ R
2n, |ξ| > 1.

In order to apply the results of Section 2 we need a last step, namely to cut-off the function
λ̃(x, ξ) near ξ = 0 in order to deal with a symbol in the class SG(0,1/s)

µ (R2n). Let us then define

λ(x, ξ) =
(
1− χ(h−1|ξ|)

)
λ̃(x, ξ)(3.47)

where χ is a compactly supported function of class γµ(Rn) with χ(t) = 1 for |t| ≤ 1. It is easy
to verify that the symbol λ still satisfies the estimates in Lemma 3.4 on all R2n with |ξ|−|α|

replaced by 〈ξ〉−|α|
h . This happens because the new symbol we are considering vanishes on the

set {|ξ| ≤ h}, and on the complementary set we have |ξ|−|α| ≤
√
2
|α|〈ξ〉−|α|

h . This implies in
particular that λ ∈ SG(0,1/s)

µ (R2n). More precisely, we have

|∂αξ ∂βxλ(x, ξ)| ≤MC |α|+|β|+1
s |α+ β|!µ〈x〉1/s−|β|〈ξ〉−|α|

h , (x, ξ) ∈ R
2n(3.48)

for every h ≥ 1, where the constants M and Cs are independent of h.

The following simple but crucial result will be the key of the proof of Theorem 1.1:

Lemma 3.5. The symbol λ in (3.47) is such that

n∑

j=1

(∂xj
λ)(x, ξ)ξj ≤ −M〈x〉1/s−1|ξ|.

Proof. Since the assertion involves only the derivatives with respect to x, it is sufficient to prove
it for the function λ̃ defined by (3.43). By definition of g1, g2, and since 〈x · ω〉 ≤ 〈x〉, we have

(g1 − g2)(x, ξ) =M(〈x〉−1+1/s − 〈x · ω〉−1+1/s) ≤ 0,(3.49)

and then

(x · ω)(λ1 − λ2)(x, ξ) = (x · ω)
∫ x·ω

0

(g1 − g2)(x− τω, ξ)dτ ≤ 0.(3.50)

Now by definition (3.43) of λ̃ and making use of (3.9), (3.30) we have, omitting the dependence
on (x, ξ):

n∑

j=1

(∂xj
λ̃)ξj =

n∑

j=1

(
−(∂xj

λ1)χ̃− λ1∂xj
χ̃− (∂xj

λ2)(1− χ̃) + λ2∂xj
χ̃
)
ξj

= −(λ1 − λ2)

n∑

j=1

(∂xj
χ̃)ξj − χ̃

n∑

j=1

(∂xj
λ1)ξj − (1− χ̃)

n∑

j=1

(∂xj
λ2)ξj

= −(λ1 − λ2)χ
′

(
2(x · ω)
〈x〉

) n∑

j=1

∂xj

2(x · ω)
〈x〉 ξj − χ̃|ξ|g1 − (1− χ̃)|ξ|g2.

On the other hand
n∑

j=1

∂xj

2(x · ω)
〈x〉 ξj = 2

n∑

j=1

(
ωj

〈x〉 −
(x · ω)xj
〈x〉3

)
ξj

= 2

( |ξ|
〈x〉 −

(x · ξ)2
|ξ|〈x〉3

)
=

2|ξ|
〈x〉

(
1−

(
x · ω
〈x〉

)2
)
,
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so we get
n∑

j=1

(∂xj
λ̃)ξj = −(λ1 − λ2)χ

′

(
2(x · ω)
〈x〉

)
2|ξ|
〈x〉

(
1−

(
x · ω
〈x〉

)2
)

− χ̃|ξ|g1 − (1− χ̃)|ξ|g2

≤ 0− χ̃|ξ|g1 − (1− χ̃)|ξ|g1 = −|ξ|g1,
because g1 ≤ g2 by (3.49) and

(λ1 − λ2)χ
′

(
2(x · ω)
〈x〉

)
2|ξ|
〈x〉

(
1−

(
x · ω
〈x〉

)2
)

≥ 0 ⇐⇒

⇐⇒ (x · ω)2(λ1 − λ2)χ
′

(
2(x · ω)
〈x〉

)
2|ξ|
〈x〉

(
1−

(
x · ω
〈x〉

)2
)

≥ 0 ⇐⇒

⇐⇒ ((x · ω)(λ1 − λ2))

(
(x · ω)χ′

(
2(x · ω)
〈x〉

))
2|ξ|
〈x〉

(
1−

(
x · ω
〈x〉

)2
)

≥ 0,

where this last inequality is true thanks to (3.50), the fact that tχ′(t) ≤ 0 ∀t, and the fact that
|x · ω| ≤ 〈x〉. Lemma 3.5 is proved. �

4. The proof of Theorem 1.1

The proof of Theorem 1.1 is based on the change of variable described in the previous section
and on the application of Theorem 2.7 in the case when the operator p(x,D) is replaced by
each of the terms appearing in the expression of P (t, x, ∂t, ∂x) in (1.2). We observe that these
terms can be regarded as operators with symbols which are continuous in t, analytic in ξ and
Gevrey of order s0 with respect to x, where s0 > 1 is the same appearing in the statement of
Theorem 1.1. Namely they are SG operators with symbols which are analytic in ξ, hence in
particular they belong to C([0, T ],SGm

µ,s0(R
2n)) for every µ > 1 with m = (m1, m2) ∈ R

2, mj ≤
2, j = 1, 2. We observe moreover that since λ1 and λ2 are analytic, the function λ(x, ξ) in (3.47)
inherits the same regularity of the cut-off function χ which can be chosen in γµ(Rn) where µ
is chosen so small that s0 + µ − 1 < 1/(1 − σ). Then the function Λ in (3.3) is such that
Λ ∈ C1([0, T ],SG(0,1/s)

µ (R2n). Moreover, taking h ≥ ho for some suitable ho ≥ 1 we have that
eλ(t, x,D) is invertible and satisfies the assumptions of Theorem 2.7. Consequently, eΛ(t, x,D)
is invertible and by Theorem 2.7 we can state the following:

Theorem 4.1. Let s0 > 1, σ ∈ (0, 1) such that s0 ∈ (1, 1/(1 − σ)) and let µ > 1 such that
µ + s0 − 1 < 1/(1 − σ). Let p ∈ C([0, T ],SG

m
µ,s0

(R2n)) for some m = (m1, m2) ∈ R
2, with

mj ≤ 1, j = 1, 2, and let Λ be the symbol defined in (3.3) with λ satisfying the condition (3.48)
for some s ∈ (s0, 1/1− σ), h ≥ 1 and for some constants Cs and M independent of h. Then
there exists ho ≥ 1 such that if h ≥ ho, then

eΛ(t, x,Dx)p(t, x,Dx)(e
Λ(t, x,Dx))

−1 = p(t, x,Dx) + q(t, x,Dx) + r(t, x,Dx) + r0(t, x,Dx)

where

q(t, x, ξ) =
∑

|α|=1

∂αξ p(t, x, ξ)(i∂x)
αΛ(t, x, ξ) +

∑

|β|=1

Dβ
xp(t, x, ξ)∂

β
ξ Λ(t, x, ξ)

and r ∈ C([0, T ],SG
(m1−2,m2−2(1−1/s))
µ,s0

(R2n)) and r0 ∈ C([0, T ],Ss0+µ−1(R
2n)).

Proof of Theorem 1.1.
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First of all, by (3.6) and applying Theorem 4.1, using the assumptions on aj and b, we get

PΛ(t, x, ∂t, ∂x) = eΛ(t, x,Dx)P (t, x, ∂t, ∂x)(e
Λ)−1(t, x,Dx)

= ∂t − i∆x − k′(t)〈x〉1−σ
h −

n∑

j=1

2(∂xj
Λ)Dxj

+ r′0(t, x,D)

+eΛ

(
n∑

j=1

aj(t, x)∂xj
+ b(t, x)

)
(eΛ)−1

= ∂t − i△x + AΛ(t, x,Dx) + r̃0(t, x,Dx)(4.1)

with r̃0(t, x, ξ) ∈ C[0, T ],SG(0,0)
µ,s0

(R2n)) and

AΛ(t, x,D) = i

n∑

j=1

aj(t, x)Dxj
+ b(t, x)− 2

n∑

j=1

(∂xj
Λ)(t, x,D)Dxj

− k′(t)〈x〉1−σ
h + r(t, x,D),

according to (3.7), where r(t, x, ξ) ∈ C([0, T ],SG(0,1−σ)
µ,s0

(R2n)). Let us now derive an energy
estimate for the operator PΛ. We have

d

dt
‖v‖2 = 2Re〈PΛv, v〉 − 〈(AΛ + A∗

Λ)v, v〉 − 2Re〈r̃0v, v〉.

Let us now compute the symbol of the operator AΛ + A∗
Λ. First of all we observe that

iaj(t, x)Dxj
+ (iaj(t, x)Dxj

)∗ =

= op (iRe aj(t, x)ξj − Im aj(t, x)ξj − iRe aj(t, x)ξj − Im aj(t, x)ξj + r̃1(t, x, ξ))

= op
(
−2 Im aj(t, x)ξj + r̃1(t, x, ξ) + ˜̃r2(t, x, ξ)

)
,

with r̃1 ∈ C([0, T ],SG(0,0)
µ,s0

(R2n) and ˜̃r2(t, x,D) a regularizing operator; similarly

(b+ b∗) (t, x) = 2Re b(t, x);

moreover the real valued operators (∂xj
Λ)(t, x,D)Dxj

are such that

(
∂xj

Λ)(t, x,D)Dxj

)∗
= (∂xj

Λ)(t, x,D)Dxj
+ r̃2(t, x,D),

with r̃2 of order (0, 0). This gives

AΛ + A∗
Λ = op

(
−2

n∑

j=1

[
Im aj(t, x) + 2(∂xj

Λ)(t, x, ξ)
]
ξj

)

+2
(
Re b(t, x)− k′(t)〈x〉1−σ

h + Re r(t, x,Dx)
)
+ r′(t, x,D)

with r′(t, x, ξ) ∈ C([0, T ],SG(0,0)
µ,s0 (R

2n)), and so

d

dt
‖v‖2 = 2Re〈PΛv, v〉 − 2

〈
op

(
−

n∑

j=1

[
Im aj(t, x) + 2(∂xj

Λ)(t, x, ξ)
]
ξj

)
v, v

〉
(4.2)

−2〈
(
Re b(t, x)− k′(t)〈x〉1−σ

h + Re r(t, x,Dx)
)
v, v〉 − 〈r′(t, x,Dx)v, v〉.
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On one hand, by assumption (1.11) and Lemma 3.5, recalling that we are going to choose a
non-negative function k(t), we have
n∑

j=1

[
Im aj(t, x)ξj + 2(∂xj

Λ)(t, x, ξ)ξj
]
=

n∑

j=1

[
Im aj(t, x)ξj + 2(∂xj

λ)(x, ξ)ξj + 2k(t)∂xj
〈x〉1−σ

h ξj
]

≤ C〈x〉−σ|ξ| − 2M〈x〉1/s−1|ξ|+ 2(1− σ)k(0)〈x〉−σ
h |ξ|

≤
(
C〈x〉1/s−1 − 2M〈x〉1/s−1 + 2(1− σ)k(0)h−σ+1− 1

s 〈x〉1/s−1
h

)
|ξ|

≤
(
C − 2M + 2(1− σ)k(0)h−σ+1− 1

s

)
〈x〉1/s−1|ξ|(4.3)

where C > 0 is the constant in Theorem 1.1.
On the other hand, we have

k′(t)〈x〉1−σ
h − Re b(t, x)− Re r(t, x, ξ) ≤ (k′(t) +N +N(|k(t)|+M)) 〈x〉1−σ

h(4.4)

where N is a positive constant independent of k(t) and M . To let the symbol on the right hand
side of (4.4) be non-positive it is suffcient to find k(t) which solves the equation

k′(t) +N |k(t)|+N(M + 1) = 0,

that is
k(t) = e−Ntk(0)− (M + 1)(1− e−Nt),

where we choose k(0) so large that k(t) ≥ 0 for t ∈ [0, T ].
Let us now fix M > C and then k(0) ≥ (M + 1)(eNT − 1). With these choices, we have

that there exists an ho ≥ 1 such that for h ≥ ho the transformation eΛ is invertible and PΛ

has the form (4.1), and moreover k(t) ≥ 0 ∀t ∈ [0, T ]. Let us fix h ≥ ho large enough to have
(1− σ)k(0)h−σ+1− 1

s ≤ C/2. With this choice of h, on one hand we have from (4.3)

(4.5)
(
C − 2M + 2(1− σ)k(0)h−σ+1− 1

s

)
〈x〉1/s−1|ξ| ≤ (2C − 2M) 〈x〉1/s−1|ξ| ≤ 0

thanks to the choice M > C; on the other hand, by the choice of k(t), from (4.4) we get

(4.6) k′(t)〈x〉1−σ
h − Re b(t, x)− Re r(t, x, ξ) ≤ 0.

Then by applying the sharp Gårding inequality we obtain
〈

op

(
−

n∑

j=1

[
Im aj(t, x) + 2(∂xj

Λ)(x, ξ)
]
ξj

)
v, v

〉
≥ 0 ∀v ∈ S (Rn),

〈
Re b(t, x)− k′(t)〈x〉1−σ

h + Re r(t, x,Dx))v, v
〉
≥ 0 ∀v ∈ S (Rn).

Hence we get
d

dt
‖v‖2 ≤ C0

(
‖PΛv‖2 + ‖v‖2

)

for a positive constant C0 and Gronwall’s lemma gives the L2-energy estimate:

‖v(t)‖2 ≤ c

(
‖v(0)‖2 +

∫ t

0

‖PΛv(τ)‖2dτ
)
, ∀t ∈ [0, T ](4.7)

for a suitable constant c > 0 and for all v ∈ C([0, T ];S (Rn)). Similarly, fixed m = (m1, m2) ∈
R

2 and differentiating ‖v(t)‖2Hm , we obtain the same estimates with the L2-norms replaced
by the Hm-norms. This implies in particular that the Cauchy problem (3.2) is well posed in
S (Rn). We want to show now that the same holds replacing PΛ by the operator

P̃Λ = Πm,ρ,s,θPΛΠ
−1
m,ρ,s,θ,
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where Πm,ρ,s,θ is defined by (1.10). Now, it is easy to verify that by Propositions A.16 and A.17
we have, modulo terms of order (0, 0):

Πm,ρ,s,θ(−i∆)Π−1
m,ρ,s,θ = −i∆+ q(x,D)

with

(4.8) q(x, ξ) = op

(
2ρ2

n∑

k=1

∂xk
〈x〉 1

s ξk

)

satisfying the estimate

|q(x, ξ)| ≤ 2ρ2
s

〈x〉1/s−1|ξ|,

whereas

Πm,ρ,s,θAΛΠ
−1
m,ρ,s,θ = AΛ + r1(t, x,D) + r2(t, x,D),

where r1 ∈ C([0, T ],SG(1/θ,−σ)(R2n)) and r2 ∈ C([0, T ],SG(0,1/s−σ)(R2n)). More precisely, r1 is
the remainder of the conjugation of AΛ with eρ1〈ξ〉

1/θ
and e−ρ1〈ξ〉1/θ , then it is easy to verify by

(A.16) that it satisfies the estimate:

|r1(t, x, ξ)| ≤ C ′〈x〉−σ|ξ|〈ξ〉1/θ−1 ≤ C ′′〈x〉−σ|ξ|h1/θ−1.

The term r2 is the remainder of the conjugation of AΛ with eρ2〈x〉
1/s

and e−ρ2〈x〉1/s , hence it
satisfies the estimate:

|r2(t, x, ξ)| ≤ N ′〈x〉1−σ

for some positive constant N ′ independent of M and k(t). Hence the additional terms q and
r1 can be treated as in (4.5) possibly enlarging M and taking M > C + ρ2/s but independent
of ρ1, whereas the term r2 can be treated as the other terms in (4.6). We finally obtain the
energy estimate:

‖v(t)‖2Hm ≤ c

(
‖v(0)‖2Hm +

∫ t

0

‖P̃Λv(τ)‖2Hmdτ

)
, ∀t ∈ [0, T ].(4.9)

for every v ∈ C1([0, T ],S (Rn)). This implies that the Cauchy problem (3.2) is well posed in
Sθ
s (R

n) and in Σθ
s(R

n) and the solution v satisfies the energy estimate:

‖v(t)‖2Hm
̺,s,θ

≤ c

(
‖v(0)‖2Hm

̺,s,θ
+

∫ t

0

‖fΛ(τ, ·)‖2Hm
̺,s,θ

dτ

)
∀t ∈ [0, T ].(4.10)

Indeed, if fΛ ∈ C([0, T ], Hm
ρ,s,θ) and g ∈ Hm

ρ,s,θ for every m ∈ R
2 and for some ρ = (ρ1, ρ2) ∈ R

2

with ρj > 0, j = 1, 2, then Πm,ρ,sf ∈ C([0, T ],S (Rn)) and Πm,ρ,sg ∈ S (Rn), hence the
Cauchy problem for the operator P̃Λ and data Πm,ρ,sf and Πm,ρ,sg has a unique solution
v ∈ C1([0, T ],S (Rn)) satisfying (4.9). But this implies that the function w = Π−1

m,ρ,sv ∈
C1([0, T ], Hm

ρ,s,θ(R
n)) is a solution of (3.2) and satisfies (4.10).

Let us finally come back to our Cauchy problem (1.1), which is equivalent to (3.2) by the
change of variable (3.1), with Λ of order (0, 1/s) and s ∈ (s0, 1/(1− σ)).

For all g ∈ Hm
ρ,s,θ and f ∈ C([0, T ];Hm

ρ,s,θ), by Proposition 2.4 we have that for every δ > C(Λ),
fΛ ∈ C([0, T ];Hm

ρ−δe2,s,θ
) and gΛ ∈ Hm

ρ−δe2,s,θ
. Then, if v is the unique solution of the Cauchy

problem (3.2), then the function u = (eΛ)−1v solves the problem (1.1) and satisfies the following
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energy estimate:

‖u‖2Hm
(ρ1,ρ2−2δ),s,θ

= ‖(eΛ)−1v‖2Hm
(ρ1,ρ2−2δ),s,θ

≤ c‖v‖2Hm
(ρ1,ρ2−δ),s,θ

≤ c

(
‖eΛg‖2Hm

(ρ1,ρ2−δ),s,θ
+

∫ t

0

‖eΛf(τ)‖2Hm
(ρ1,ρ2−δ),s,θ

dτ

)

≤ c

(
‖g‖2Hm

ρ,s,θ
+

∫ t

0

‖f(τ)‖2Hm
ρ,s,θ

dτ

)
, t ∈ [0, T ]

for some positive δ. Theorem 1.1 is then proved.
�

Remark 4.2. By small changes in the proof, in the critical case s = 1/(1−σ), under the same
assumptions we can show local in time well-posedness for the Cauchy problem (1.1), that is we
can show that the solution u is in C([0, T ∗], Hm

(ρ1,ρ2−δ̄),s,θ
) for some T ∗ ≤ T . More precisely,

taking s = 1/(1− σ), formula (4.3) turns into
n∑

j=1

[
Im aj(t, x)ξj + 2(∂xj

Λ)(t, x, ξ)ξj
]
≤ (C − 2M + 2(1− σ)k(0)) 〈x〉1/s−1|ξ|.

Taking into account also the term q(x,D) in (4.8), we have to choose M ≥ C/2+(1−σ)k(0)+
ρ2/s. Then since we want k(0) ≥ (M + 1)(eNT − 1), then we have to take

k(0) ≥ (C/2 + 1 + ρ2/s)(e
NT − 1)

1− (1− σ)(eNT − 1)
.

This can be done only if T < 1
N
ln
(
1 + 1

1−σ

)
, that is only locally in time.

5. Examples and concluding remarks

In this section we give some examples showing that the phenomenon of the loss of decay re-
ally appears in the problem (1.1). Moreover, we show by a counterexample that the bound
s = 1/(1− σ) is sharp. Finally, we discuss the possibility to obtain solutions of (1.1) with loss
of regularity but no loss of decay, stating a result which can be easily proved combining the
argument of the proof of Theorem 1.1 with the techniques used in [29]; since the proof of this
result is a mere repetition of the argument of the proof of Theorem 1.1 for a different choice of
Λ, it is omitted. We conclude the paper leaving to the reader an open question.

Example 5.1. Let T > 0, s > 1, σ ∈ (0, 1) such that s <
1

1− σ
, and consider the Cauchy

problem

(5.1)

{
∂tu− i∂2xu+ it(1− σ)x〈x〉−σ−1∂xu+ b(t, x)u = 0 (t, x) ∈ [0, T ]× R,

u(0, x) = g(x) := e−〈x〉
1
s x ∈ R,

where
b(t, x) = −〈x〉1−σ + ic(t, x)

and

c(t, x) =
1

s
x〈x〉1/s−2

(
t(1− σ)x〈x〉−σ−1 − 1

s
x〈x〉1/s−2

)

+t(1− σ)〈x〉−σ−1 − 1

s
〈x〉1/s−2 − t(1− σ2)x2〈x〉−σ−3 − 1

s

(
1

s
− 2

)
x2〈x〉1/s−4.
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We notice that the function b satisfies the condition (1.13). Moreover the coefficient a(t, x) =

it(1−σ)x〈x〉−σ−1 is purely imaginary and satisfies the condition (1.11). Finally, g ∈ H
(0,−τ)
(0,1),s,θ(R)

for every τ > 1/2 and θ > 1 since

〈x〉−τe〈x〉
1/s

g(x) = 〈x〉−τ ∈ L2(R).

Then the assumptions of Theorem 1.1 are all satisfied. It is easy to verify that the problem
(5.1) admits the solution

(5.2) u(t, x) = et〈x〉
1−σ−〈x〉1/s /∈ H

(0,−τ)
(0,1),s,θ(R)

for any t ∈ (0, T ] since

〈x〉−τe〈x〉
1/s

u(x) = 〈x〉−τet〈x〉
1−σ

/∈ L2(R).

However, we have that u ∈ C([0, T ], H
(0,−τ)

(0,1−δ̄),s,θ
(R)) for every δ̄ > 0. Hence we obtain that the

solution does not present a weaker regularity with respect to the initial datum g but a weaker
decay at infinity. In this case the loss δ̄ is arbitrarily small.

Example 5.2. We observe that Example 5.1 is valid also in the critical case s = 1/(1− σ). In
this case, rephrasing it in terms of σ we obtain that the Cauchy problem

(5.3)

{
∂tu− i∂2xu+ i(t− 1)(1− σ)x〈x〉−σ−1∂xu+ b(t, x)u = 0 (t, x) ∈ [0, T ]× R,

u(0, x) = g(x) := e−〈x〉1−σ
x ∈ R,

with b(t, x) = −〈x〉1−σ+i [(1− σ)(t− 1)〈x〉−σ−1 − (1− σ2)(t− 1)x2〈x〉−σ−3] admits the solution

u(t, x) = e(t−1)〈x〉1−σ ∈ C([0, T ], H
(0,−τ)
(0,1−T ),1/(1−σ),θ(R)).

In this case Theorem 1.1 holds with the loss of decay δ̄ = T .

Example 5.3. With minor changes in Example 5.1 the reader can easily verify that the function

u(t, x) = et〈x〉
1−σ+〈x〉1/s

with s ≤ 1

1− σ
solves the Cauchy problem with exponentially growing initial datum g(x) =

e〈x〉
1/s

for the equation

∂tu− i∂2xu+ it(1 − σ)x〈x〉−σ−1∂xu+ b(t, x)u = 0

where b(t, x) = −〈x〉1−σ + ic(t, x) with

c(t, x) =
1

s
x〈x〉1/s−2

(
t(1− σ)x〈x〉−σ−1 +

1

s
x〈x〉1/s−2

)

+t(1− σ)〈x〉−σ−1 +
1

s
〈x〉1/s−2 − t(1− σ2)x2〈x〉−σ−3 +

1

s

(
1

s
− 2

)
x2〈x〉1/s−4.

Also in this situation the assumptions of Theorem 1.1 are satisfied and we have a solution whose
growth at infinity is stronger than the growth of the Cauchy datum.

Remark 5.4. Example 5.1 shows also that the value s = 1/(1− σ) is a sharp threshold for the

well posedness. In fact, if we assume s > 1/(1− σ), then we still have g ∈ H
(0,−τ)
(0,1),s,θ(R) and the

solution of (5.1) is still expressed by the function u in (5.2) but in this case we cannot find any

δ̄ > 0 such that u ∈ H
(0,−τ)

(0,1−δ̄),s,θ
(R) since for every δ̄ > 0 we have

〈x〉−τe(1−δ̄)〈x〉1/su(x) = 〈x〉−τet〈x〉
1−σ−δ̄〈x〉1/s /∈ L2(R)

if s > 1/(1− σ).
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The choice of the function Λ(t, x, ξ) in Section 2 has a key role in the proof of Theorem 1.1
and the main effect is to concentrate all the loss in the spaces Hm

(ρ1,ρ2),s,θ
in the second index

ρ2. On the other hand, if we assume the coefficients aj and b bounded in (t, x) and use the
function Λ in [29, Formula (2.15)] we can recapture the main results of [29] in the more general
functional setting of our paper repeating readily the argument in the proof of Theorem 1.1,
that is we obtain a solution which presents a loss of regularity with respect to the initial data
but with the same behavior at infinity. More precisely, the following result holds. The proof is
omitted for the sake of brevity.

Theorem 5.5. Let s0 > 1, σ ∈ (0, 1) such that s0 < 1/(1 − σ) and let P (t, x, ∂t, ∂x) be an
operator of the form (1.2) with aj and b continuous with respect to t and satisfying for all
(t, x) ∈ [0, T ]× R

n, β ∈ N
n and 1 ≤ j ≤ n the following conditions:

|∂βx (Im aj)(t, x)| ≤ C |β|+1β!s0〈x〉−σ−|β|,(5.4)

|∂βx (Re aj)(t, x)| ≤ C |β|+1β!s0〈x〉−|β|(5.5)

|∂βx b(t, x)| ≤ C |β|+1β!s0〈x〉−|β|,(5.6)

for some positive constant C independent of β. Let moreover f ∈ C([0, T ];Hm
ρ,s,θ(R

n)) and

g ∈ Hm
ρ,s,θ(R

n) for some s > s0, θ ∈ (s0, 1/(1 − σ)) and ρ = (ρ1, ρ2), m = (m1, m2) ∈ R
2.

Then there exists δ̄ = δ̄(θ, ρ1) > 0 such that the Cauchy problem (1.1) admits a unique solution
u ∈ C([0, T ];Hm

(ρ1−δ̄,ρ2),s,θ
(Rn)) which satisfies:

(5.7) ‖u(t)‖2Hm
(ρ1−δ̄,ρ2),s,θ

≤ Cs

(
‖g‖2Hm

ρ,s,θ
+

∫ t

0

‖f(τ)‖2Hm
ρ,s,θ

dτ

)
,

for t ∈ [0, T ] and for some Cs > 0.

Appendix A. Calculus for pseudodifferential operators of in-

finite order

Here we develop the calculus for pseudodifferential operators with symbols in SGτ,∞
µ,ν,s(R

2n)
and prove the results stated in Subsection 2.2. Some proofs will be just sketched or omitted
since they follow readily the arguments used for other similar calculi, cf. [1, 12, 13, 15, 38]. For
completeness and to achieve our results, we introduce two auxiliary classes of symbols which
have infinite order in ξ, respectively in both x and ξ.

Definition A.1. Fixed C > 0, c > 0 and µ, ν, τ, θ ∈ R with µ > 1 and 1 < ν ≤ θ, we shall
denote by SG

∞,τ
µ,ν,θ(R

2n;C, c) the Banach space of all functions a(x, ξ) ∈ C∞(R2n) satisfying the
following estimates:

(A.1) sup
α,β∈Nn

sup
(x,ξ)∈R2n

C−|α|−|β|(α!)−µ(β!)−ν〈ξ〉|α|〈x〉−τ+|β| exp
[
−c|ξ| 1θ

] ∣∣∂αξ ∂βxa(x, ξ)
∣∣ < +∞.

We set SG
∞,τ
µ,ν,θ(R

2n) = lim
−→

C,c→∞

SG
∞,τ
µ,ν,θ(R

2n;C, c) endowed with the inductive limit topology.

Definition A.2. Fixed C > 0, c > 0 and µ, ν, s, θ ∈ R with 1 < µ ≤ s and 1 < ν ≤ θ, we shall
denote by SG

∞
µ,ν,s,θ(R

2n;C, c) the Banach space of all functions a(x, ξ) ∈ C∞(R2n) satisfying
the following estimates:
(A.2)

sup
α,β∈Nn

sup
(x,ξ)∈R2n

C−|α|−|β|(α!)−µ(β!)−ν〈ξ〉|α|〈x〉|β| exp
[
−c(|x| 1s + |ξ| 1θ )

] ∣∣∂αξ ∂βxa(x, ξ)
∣∣ < +∞.



26 Schrödinger equation in Gelfand-Shilov classes

We set SG
∞
µ,ν,s,θ(R

2n) = lim
−→

C,c→∞

SG
∞
µ,ν,s,θ(R

2n;C, c) endowed with the inductive limit topology.

For simplicity, in the case µ = ν we shall use the notation SG∞,τ
µ,θ (R2n) and SG∞

µ,s,θ(R
2n) for

the classes SG∞,τ
µ,µ,θ(R

2n) and SG∞
µ,µ,s,θ(R

2n).

The following evident inclusions hold for every m = (m1, m2) ∈ R
2 and for every s > 1, θ > 1:

SGm
µ,ν(R

2n) ⊂ SG∞,m2

µ,ν,θ (R2n) ⊂ SG∞
µ,ν,s,θ(R

2n)

and
SGm

µ,ν(R
2n) ⊂ SGm1,∞

µ,ν,s (R2n) ⊂ SG∞
µ,ν,s,θ(R

2n).

Proposition A.3. Let λ ∈ C∞(R2n). Then the following conditions holds:

i) If λ ∈ SG
(0,1/s)
µ (R2n), then eλ(x,ξ) ∈ SG

0,∞
µ,s (R

2n);

ii) If λ ∈ SG
(1/θ,0)
µ (R2n), then eλ(x,ξ) ∈ SG

∞,0
µ,θ (R

2n).

Proof. We prove only i), the proof of ii) being similar. Let λ ∈ SG(0,1/s)
µ (R2n;C). Repeating

readily the argument in the proof of [30, Lemma 6.2] we obtain that

∣∣∂αξ ∂βxeλ(x,ξ)
∣∣ ≤ B|α+β|〈ξ〉−|α|〈x〉−|β|eλ(x,ξ)

|α+β|∑

j=0

(co〈x〉1/s)|α+β|−jj!µ

for every α, β ∈ N
n, with B = 6C and co is the norm of λ in SG(0,1/s)

µ (R2n;C). To conclude the
proof it is sufficient to observe that by standard factorial inequalities we have:

|α+β|∑

j=0

(co〈x〉1/s)|α+β|−jj!µ ≤ |α + β|!µeco〈x〉1/s .

�

We start by proving Proposition 2.3. For this we need a preliminary result, cf. [27] for the
proof.

Lemma A.4. Given κ > 1, ζ > 0, let

mκ,ζ(x) =
∞∑

j=0

ζj〈x〉2j
j!2κ

, x ∈ R
n.

Then, for every ǫ > 0 there exists a constant C = C(κ, ǫ) > 0 such that

(A.3) C−1e(2κ−ǫ)ζ
1
2κ 〈x〉

1
κ ≤ mν,ζ(x) ≤ Ce(2κ+ǫ)ζ

1
2κ 〈x〉

1
κ

for every x ∈ R
n.

Proof of Proposition 2.3. Observe that

1

mκ,ζ(x)

∞∑

j=0

ζj

(j!)2κ
(1−∆ξ)

jei〈x,ξ〉 = ei〈x,ξ〉.

Let now κ = s and let 1 < µ < s and 1 < ν ≤ θ. Let moreover Ω be a bounded subset of
S θ

s (R
n). This implies that there exists r0 > 0 such that for every h > 0 and for every f ∈ Ω:

sup
α∈Nn

sup
ξ∈Rn

h−|α|(α!)−ser0|ξ|
1/θ |Dβ

ξ f̂(ξ)| <∞
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For fixed α, β ∈ N
n and for f ∈ Ω we have

xαDβ
x(a(x,D)f)(x) = xα

∑

γ≤β

(
β

γ

)∫

Rn

ei〈x,ξ〉ξγDβ−γ
x a(x, ξ)f̂(ξ) d−ξ

=
xα

ms,ζ(x)

∑

γ≤β

(
β

γ

)
gζ,β,γ(x),

with

gζ,β,γ(x) =
∞∑

j=0

ζj

(j!)2s

∫

Rn

ei〈x,ξ〉(1−∆ξ)
j
(
ξγDβ−γ

x a(x, ξ)f̂(ξ)
)
d−ξ.

Since µ < s and ν ≤ θ then, by standard factorial inequalities, there exist A > 0, c > 0 and
for every h > 0 there exists Ch > 0 such that

|(1−∆ξ)
j(ξγDβ−γ

x a(x, ξ)f̂(ξ))| ≤ ChA
|β|hjj!2sγ!θ(β − γ)!θec|x|

1
s−r0|ξ|

1
θ .

Hence, we get

|gζ,β,γ(x)| ≤ Ch

∞∑

j=0

(hζ
1
2s )jA|β|(β)!θec|x|

1
s

∫

Rn

e−r0|ξ|
1
σ dξ

Moreover for every ε ∈ (0, r0) we have

e−ε|x|1/s|xα| ≤ A|α|+1
ε (α!)s.

Now, taking ζ such that (2s − ǫ)ζ
1
2s − c > 0 and choosing h so small that hζ < 1, we obtain

that the set
{a(·, D)f : f ∈ Ω}

is bounded in S θ
s (R

n). This proves the continuity of a(x,D) on S θ
s (R

n). The continuity on
(S σ

s )
′(Rd) now follows from the preceding continuity and duality. �

A similar continuity result can be proved for operators with symbols in SG∞,τ
µ,ν,θ(R

2n). We
omit the proof since it can be obtained using the same type of argument as in the previous
proof.

Proposition A.5. Let µ, ν, τ, θ ∈ R with 1 < ν < θ, ν > 1 and let a ∈ SG
∞,τ
µ,ν,θ(R

2n). Then

a(x,D) is linear and continuous on S̃ θ
s (R

n) and it extends to a continuous map on (S̃ θ
s )

′(Rn)
for every s ≥ µ.

We now define asymptotic expansions for symbols in SGτ,∞
µ,ν,s(R

2n). For r > 0 denote

Qr = {(x, ξ) ∈ R
n : 〈ξ〉 < r and 〈x〉 < r}

and
Qe

r = R
2n \Qr.

Definition A.6. Let B,C, c > 0. We shall denote by FSτ,∞
µ,ν,s(R

2n;B,C, c) the space of all

formal sums
∑
j≥0

aj(x, ξ) such that aj(x, ξ) ∈ C∞(R2n) for all j ≥ 0 and

sup
j≥0

sup
α,β∈Nn

sup
(x,ξ)∈Qe

Bjµ+ν−1

C−|α|−|β|−2j(α!)−µ(β!)−ν(j!)−µ−ν+1〈ξ〉−τ+|α|+j〈x〉|β|+j·

(A.4) · exp
[
−c|x| 1s

] ∣∣∂αξ ∂βxaj(x, ξ)
∣∣ < +∞.
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Consider now the space FSτ,∞
µ,ν,s(R

2n;B,C, c) obtained from FSτ,∞
µ,ν,s(R

2n;B,C, c) by quotient-
ing by the subspace

E =

{∑

j≥0

aj(x, ξ) ∈ FSτ,∞
µ,ν,s(R

2n;B,C) : supp(aj) ⊂ QBjµ+ν−1 ∀j ≥ 0

}
.

By abuse, we shall denote the elements of FSτ,∞
µ,ν,s(R

2n;B,C, c) by formal sums of the form∑
j≥0

aj(x, ξ). The arguments in the following are independent of the choice of representative.

We observe that FSτ,∞
µ,ν,s(R

2n;B,C, c) is a Banach space endowed with the norm given by the
left-hand side of (A.4). We set

FSτ,∞
µ,ν,s(R

2n) = lim
−→

B,C,c→+∞

FSτ,∞
µ,ν,s(R

2n;B,C, c).

Every symbol a ∈ SGτ,∞
µ,ν,s(R

2n) can be identified with an element
∑
j≥0

aj of FSτ,∞
µ,ν,s(R

2n), by

setting a0 = a and aj = 0 for all j ≥ 1.

Definition A.7. We say that two sums
∑
j≥0

aj,
∑
j≥0

a′j from FSτ,∞
µ,ν,s(R

2n) are equivalent if there

exist constants B,C, c > 0 such that

sup
N∈Z+

sup
α,β∈Nn

sup
(x,ξ)∈Qe

BNµ+ν−1

C−|α|−|β|−2N(α!)−µ(β!)−ν(N !)−µ−ν+1〈ξ〉−τ+|α|+N〈x〉|β|+N ·

(A.5) · exp
[
−c(|x| 1s

] ∣∣∣∣∣∂
α
ξ ∂

β
x

∑

j<N

(aj − a′j)

∣∣∣∣∣ < +∞.

In this case we write
∑
j≥0

aj ∼
∑
j≥0

a′j.

In a similar way, by simply exchanging the roles of x and ξ in (A.4),(A.7), we can define the
space FS∞,τ

µ,ν,θ(R
2n) encoding the asymptotic expansions of symbols from Γ∞,τ

µ,ν,θ(R
2n). Moreover,

we obtain a corresponding definition for the space FSm
µ,ν(R

2n) of formal sums of symbols of
finite order and the related notion of equivalence for every m = (m1, m2) ∈ R

2 by simply

replacing τ by m1 and e−c|x|
1
s by 〈x〉−m2 in (A.4), (A.7), cf. [15] where the complete calculus

for this class is developed. An analogous argument allows to define the class FS∞
µ,ν,s,θ(R

2n) and
the notion of asymptotic expansions for symbols from SG∞

µ,ν,s,θ(R
2n). We omit the details for

the sake of brevity.

Proposition A.8. Given a sum
∑
j≥0

aj ∈ FSτ,∞
µ,ν,s(R

2n), (resp.
∑
j≥0

aj ∈ FSm
µ,ν(R

2n)), we can find

a symbol a ∈ SG
τ,∞
µ,ν,s(R

2n) (resp. a ∈ SG
m
µ,ν(R

2n)) such that

a ∼
∑

j≥0

aj in FSτ,∞
µ,ν,s(R

2n) (resp. in FSm
µ,ν(R

2n)).

Proof. Let ϕ ∈ C∞(R2n), 0 ≤ ϕ ≤ 1 such that ϕ(x, ξ) = 0 if (x, ξ) ∈ Q1, ϕ(x, ξ) = 1 if
(x, ξ) ∈ Qe

2 and

(A.6)
∣∣Dδ

xD
γ
ξϕ(x, ξ)

∣∣ ≤ C |γ|+|δ|+1(γ!)µ(δ!)ν ∀(x, ξ) ∈ R
2n.

We define:

ϕ0(x, ξ) = ϕ

(
2

R
x,

2

R
ξ

)
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and

ϕj(x, ξ) = ϕ

(
1

Rjµ+ν−1
x,

1

Rjµ+ν−1
ξ

)
, j ≥ 1.

We want to prove that if R is sufficiently large,

(A.7) a(x, ξ) =
∑

j≥0

ϕj(x, ξ)aj(x, ξ)

is well defined as an element of SGτ,∞
µ,ν,s(R

2n) and a ∼
∑
j≥0

aj in FSτ,∞
µ,ν,s(R

2n).

We define

∂αξ ∂
β
xa(x, ξ) =

∑

j≥0

∑

γ≤α

δ≤β

(
α

γ

)(
β

δ

)
Dβ−δ

x Dα−γ
ξ aj(x, ξ) ·Dδ

xD
γ
ξϕj(x, ξ).

Choosing R ≥ B where B is the constant in Definition A.6, we can apply the estimates (A.4)
and obtain ∣∣∂αξ ∂βxa(x, ξ)

∣∣ ≤ C |α|+|β|+1α!β!〈x〉−|β|〈ξ〉τ−|α|ec|x|
1
s
∑

j≥0

Hjαβ(x, ξ)

where

Hjαβ(x, ξ) =
∑

γ≤α

δ≤β

(α− γ)!µ−1(β − δ)!ν−1

γ!δ!
· C2j−|γ|−|δ|(j!)µ+ν−1〈x〉|δ|−j〈ξ〉|γ|−j

∣∣Dδ
xD

γ
ξϕj(x, ξ)

∣∣ .

Now the condition (A.6) and the fact that Dδ
xD

γ
ξϕj(x, ξ) = 0 in Qe

2Rj2ν−1 for (δ, γ) 6= (0, 0)
imply that

Hjαβ(x, ξ) ≤ C
|α|+|β|+1
1 (α!)µ−1(β!)ν−1

(
C2

R

)j

where C2 is independent of R. Enlarging R, we obtain that
∑

j≥0

Hjαβ(x, ξ) ≤ C
|α|+|β|+1
3 (α!)µ−1(β!)ν−1 ∀(x, ξ) ∈ R

2n

from which we deduce that a ∈ SGτ,∞
µ,ν,s(R

2n).
It remains to prove that a ∼ ∑

j≥0

aj . Let us fixN ∈ N\{0}.We observe that if (x, ξ) ∈ Qe
2RNµ+ν−1 ,

then
a(x, ξ)−

∑

j<N

aj(x, ξ) =
∑

j≥N

ϕj(x, ξ)aj(x, ξ).

Thus we have∣∣∣∣∣
∑

j≥N

∂αξ ∂
β
x [ϕj(x, ξ)aj(x, ξ)]

∣∣∣∣∣ ≤ C |α|+|β|+1α!β!〈x〉−|β|−N〈ξ〉τ−|α|−Nec|x|
1
s
∑

j≥N

HjNαβ(x, ξ)

where

HjNαβ(x, ξ) =
∑

γ≤α

δ≤β

(α− γ)!µ−1(β − δ)!ν−1

γ!δ!
·C2j−|γ|−|δ|(j!)µ+ν−1〈x〉|δ|+N−j〈ξ〉|γ|+N−j|Dδ

xD
γ
ξϕj(x, ξ)|.

Arguing as above we can estimate

HjNαβ(x, ξ) ≤ C
2N+|α|+|β|+1
4 (N !)µ+ν−1(α!)µ−1(β!)ν−1

and this concludes the proof. �
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Using the same argument it is easy to prove that if we start from a sum
∑
j≥0

aj ∈ FSm
µ,ν(R

2n)

(respectively in FS∞,τ
µ,ν,s(R

2n) or in FS∞
µ,ν,s(R

2n)) we can find a symbol a in Γm
µ,ν(R

2n) (respectively
in Γ∞,τ

µ,ν,s(R
2n) or in Γ∞

µ,ν,s(R
2n)) equivalent to

∑
j≥0

aj in the corresponding class.

Proposition A.9. Let µ, ν, s be real numbers such that 1 < µ ≤ ν and s > µ + ν − 1 and
let a ∈ SG

0,∞
µ,ν,s(R

2n) such that a ∼ 0 in FS0,∞
µ,ν,s(R

2n), then a ∈ Sµ+ν−1(R
2n). In particular,

the operator a(x,D) is Sµ+ν−1-regularizing, that is it maps continuously (Sµ+ν−1)
′(Rn) into

Sµ+ν−1(R
n).

Proof. It is sufficient to prove that if a ∼ 0, then a ∈ Sµ+ν−1(R
2n). This would imply that the

Schwartz kernel of a(x,D) belongs to Sµ+ν−1(R
2n) which gives the assertion. By Definition A.7,

there exist B,C, τ > 0 such that, for every (x, ξ) ∈ R
2n we have:

∣∣∂αξ ∂βxa(x, ξ)
∣∣ ≤ CA|α|+|β|(α!)µ(β!)ν〈ξ〉−|α|〈x〉−|β|ec|x|

1/s · inf
0≤N≤(B−1〈ξ〉〈x〉)

1
µ+ν−1

A2N (N !)µ+ν−1

〈ξ〉N〈x〉N

≤ CA|α|+|β|(α!)µ(β!)νec|x|
1
s exp

[
−τ(〈x〉〈ξ〉) 1

µ+ν−1

]

≤ CA|α|+|β|(α!)µ(β!)νec|x|
1
s exp

[
−τ(|x| 1

µ+ν−1 + |ξ| 1
µ+ν−1 )

]
.

cf. [39, Lemma 3.2.4]. Since max{µ, ν} < µ+ ν − 1 < s, we get
∣∣∂αξ ∂βxa(x, ξ)

∣∣ ≤ C ′A|α|+|β|(α!)µ(β!)ν exp
[
−τ
2
(|x| 1

µ+ν−1 + |ξ| 1
µ+ν−1 )

]
.

Hence a ∈ Sµ+ν−1(R
2n). This concludes the proof. �

The next result concerns the regularity and decay properties of the Schwartz kernel of our
operators far from the diagonal.

Proposition A.10. Let a ∈ SG
τ,∞
µ,ν,s(R

2n) with s > µ+ ν − 1. For k ∈ (0, 1) define:

Ωk = {(x, y) ∈ R
2n : |x− y| > k〈x〉}.

Then the kernel K of a, defined by

K(x, y) =

∫

Rn

ei〈x−y,ξ〉a(x, ξ)d−ξ,

is in C∞(R2n \∆), where ∆ denotes the diagonal in R
2n and there exist positive constants C, c̃

depending on k such that

(A.8)
∣∣Dβ

xD
γ
yK(x, y)

∣∣ ≤ C |β|+|γ|+1(β!γ!)ν exp
[
−c̃(|x| 1

µ+ν−1 + |y| 1
µ+ν−1 )

]

for every (x, y) ∈ Ωk and for every β, γ ∈ N
n.

Proof of Proposition A.10. First we observe that for any fixed R > 0 we can find a partition
of unity ψN(ξ) such that

suppψ0 ⊂ {ξ : 〈ξ〉 ≤ 3R}
suppψN ⊂ {ξ : 2RNµ ≤ 〈ξ〉 ≤ 3R(N + 1)µ}, N = 1, 2, ...

and ∣∣Dα
ξ ψN(ξ)

∣∣ ≤ C |α|+1(α!)µ [R sup(Nµ, 1)]−|α|

for every α ∈ N
n and for every ξ ∈ R

n. For every fixed θ ≥ ν we can write, for u, v ∈ S θ
s (R

n) :

〈K, v ⊗ u〉 =
∞∑

N=0

〈KN , v ⊗ u〉
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with

KN(x, y) =

∫

Rn

ei〈x−y,ξ〉a(x, ξ)ψN(ξ)d
−ξ

so we may decompose

K =

∞∑

N=0

KN .

Let k ∈ (0, 1) and (x, y) ∈ Ωk. Let h ∈ {1, ..., n} such that |xh − yh| ≥ k
n
〈x〉. Then, integrating

by parts infinitely many times, we get, for every α, γ ∈ N
n :

Dα
xD

γ
yKN(x, y) = (−1)|γ|

∑

β≤α

(
α

β

)∫

Rn

ei〈x−y,ξ〉ξβ+γψN(ξ)D
α−β
x a(x, ξ)d−ξ

= (−1)|γ|+N
∑

β≤α

(
α

β

)
(xh − yh)

−N

∫

Rn

ei〈x−y,ξ〉DN
ξh

[
ξβ+γψN(ξ)D

α−β
x a(x, ξ)

]
d−ξ

= (−1)|γ|+N · (xh − yh)
−N

m2µ,ζ(x− y)

∑

β≤α

(
α

β

) ∞∑

j=0

ζj

(j!)2ν

∫

Rn

ei〈x−y,ξ〉λhjNαβγ(x, ξ)d
−ξ

with

(A.9) λhjNαβγ(x, ξ) = (1−∆ξ)
jDN

ξh

[
ξβ+γψN(ξ)D

α−β
x a(x, ξ)

]
.

Let eh be the h-th vector of the canonical basis of Rn and βh = 〈β, eh〉, γh = 〈γ, eh〉. By Leibniz
formula we obtain

λhjNαβγ(x, ξ) =
∑

N1+N2+N3=N

N1≤βh+γh

(−i)N1
N !

N1!N2!N3!
· (βh + γh)!

(βh + γh −N1)!
·

·(1−∆ξ)
j
[
ξβ+γ−N1ehDN2

ξh
ψN(ξ)D

N3
ξh
Dα−β

x a(x, ξ)
]
.

Hence

|λhjNαβγ(x, ξ)| ≤ C
∑

N1+N2+N3=N

N1≤βh+γh

N !

N1!N2!N3!
· (βh + γh)!

(βh + γh −N1)!
C

|α−β|+N2+N3

1 ·

·(N2!N3!)
µ [(α− β)!]ν Cj

2(j!)
2µ

(
1

RNµ

)N2

〈ξ〉τ+|β|+|γ|−N1−N3ec|x|
1
s .

We observe that on the support of ψN we have 2RNµ ≤ 〈ξ〉 ≤ 3R(N+1)µ. Thus from standard
factorial inequalities it follows that

|λhjNαβγ(x, ξ)| ≤ C
|α|+|γ|+1
1 (α!γ!)νCj

2(j!)
2µ

(
C3

R

)N

ec|x|
1
s

with C3 independent of R. From these estimates, choosing ζ < 1
C2
, we deduce that

∣∣Dα
xD

γ
yKN(x, y)

∣∣ ≤ C
|α|+|γ|+1
4 (α!γ!)ν

(
C5

R

)N

exp
[
c|x| 1s − cζ

1
µ |x− y| 1µ

]

with C5 = C5(k) independent of R. Finally, we observe that since µ < µ+ν−1 < s, then there
exists ck > 0 such that

sup
(x,y)∈Ωk

exp
[
ck(|x|

1
µ+ν−1 + |y| 1

µ+ν−1 )− cζ
1
ν |x− y| 1µ + c|x| 1s

]
≤ 1.
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Then, choosing R sufficiently large, we obtain the estimates (A.8). �

Theorem A.11. Let µ, ν, s, τ ∈ R such that µ > 1, ν > 1, s > µ+ ν−1 and let A be defined by
(2.7) for some a ∈ Πτ,∞

µ,ν,s(R
3n). Then there exists b ∈ SG

τ,∞
µ,ν,s(R

2n) such that A = b(x,D) + R

for some Sµ+ν−1-regularizing operator R. Moreover, we have b ∼ ∑
j≥0

bj in FSτ,∞
µ,ν,s(R

2n), where

(A.10) bj(x, ξ) =
∑

|α|=j

(α!)−1∂αξD
α
y a(x, y, ξ)|y=x .

Proof. Let χ ∈ C∞(R2n) such that

(A.11) χ(x, y) =

{
1 if |x− y| ≤ 1

4
〈x〉

0 if |x− y| ≥ 1
2
〈x〉

and ∣∣Dβ
xD

γ
yχ(x, y)

∣∣ ≤ C |β|+|γ|+1(β!γ!)ν

for all β, γ ∈ N
n and (x, y) ∈ R

2n. We may decompose a as the sum of two elements of
Πτ,∞

µ,ν,s(R
3n) writing

a(x, y, ξ) = χ(x, y)a(x, y, ξ) + (1− χ(x, y))a(x, y, ξ).

Furthermore, it follows from Theorem A.10 that (1− χ(x, y))a(x, y, ξ) defines a ν-regularizing
operator. Hence, eventually perturbing A with a ν-regularizing operator, we can assume that

a(x, y, ξ) is supported on
(
R

2n \ Ω 1
2

)
× R

n, where Ω 1
2

is defined as in Theorem A.10.

It is trivial to verify that
∑
j≥0

aj defined by (A.10) belongs to FSτ,∞
µ,ν,s(R

2n). By Proposition A.8

we can find a sequence ϕj ∈ C∞(R2n) depending on a parameter R such that

p(x, ξ) =
∑

j≥0

ϕj(x, ξ)aj(x, ξ)

defines an element of SGτ,∞
µ,ν,s(R

2n) for R large and p ∼ ∑
j≥0

aj in FSτ,∞
µ,ν,s(R

2n). Let P = p(x,D).

To prove the Theorem it is sufficient to show that the kernel K(x, y) of A−P is in Sµ+ν−1(R
2n).

We can write

a(x, y, ξ)− p(x, ξ) = (1− ϕ0(x, ξ))a(x, y, ξ)

+

∞∑

N=0

(ϕN − ϕN+1)(x, ξ)

(
a(x, y, ξ)−

∑

j≤N

aj(x, ξ)

)
.

Consequently,

(A.12) K(x, y) = K(x, y) +

∞∑

N=0

KN (x, y)

where

K(x, y) =

∫

Rn

ei〈x−y,ξ〉(1− ϕ0(x, ξ))a(x, y, ξ)d
−ξ,

KN(x, y) =

∫

Rn

ei〈x−y,ξ〉(ϕN − ϕN+1)(x, ξ)

(
a(x, y, ξ)−

∑

j≤N

aj(x, ξ)

)
d−ξ.
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A power expansion in the second argument gives for N = 1, 2, ...

a(x, y, ξ) =
∑

|α|≤N

(α!)−1(y − x)α∂αy a(x, x, ξ) +
∑

|α|=N+1

(α!)−1(y − x)αwα(x, y, ξ)

with

wα(x, y, ξ) = (N + 1)

∫ 1

0

∂αy a(x, x+ t(y − x), ξ)(1− t)Ndt.

In view of our definition of the aj(x, ξ), integrating by parts, we obtain that

KN (x, y) =WN (x, y) +
∑

1≤|α|≤N

∑

06=β≤α

1

β!(α− β)!
·

·
∫

Rn

ei〈x−y,ξ〉Dβ
ξ (ϕN − ϕN+1)(x, ξ)(D

α−β
ξ ∂αy a)(x, x, ξ)d

−ξ,

where for all N = 1, 2, ...

WN(x, y) =
∑

|α|=N+1

∑

β≤α

1

β!(α− β)!
·

·
∫

Rn

ei〈x−y,ξ〉Dβ
ξ (ϕN − ϕN+1)(x, ξ)D

α−β
ξ wα(x, y, ξ)d

−ξ.

Using an absolute convergence argument, we may re-arrange the sums under the integral sign.
We also observe that ∑

N≥|α|

Dβ
ξ (ϕN − ϕN+1)(x, ξ) = Dβ

ξϕ|α|(x, ξ).

Then we have

K = K +
∑

α6=0

Iα +

∞∑

N=0

WN

where

Iα(x, y) =
∑

06=β≤α

1

β!(α− β)!

∫

Rn

ei〈x−y,ξ〉Dβ
ξϕ|α|(x, ξ)D

α−β
ξ ∂αy a(x, x, ξ)d

−ξ

and we may write W0(x, y) for K0(x, y). To conclude the proof, it is sufficient to prove that

K,
∑
α6=0

Iα,
∞∑

N=0

WN ∈ Sµ+ν−1(R
2n). First of all, we have to estimate the derivatives of K for

(x, ξ) ∈ supp(1− ϕ0(x, ξ)), i.e. for 〈x〉 ≤ R, 〈ξ〉 ≤ R. We have

∣∣xkyhDδ
xD

γ
yK(x, y)

∣∣ =

∣∣∣∣∣∣∣
xkyh

∑

γ1+γ2=γ

δ1+δ2+δ3=δ

γ!δ!

γ1!γ2!δ1!δ2!δ3!
·

· (−1)|γ1|
∫

Rn

ei〈x−y,ξ〉ξγ1+δ1Dδ2
x D

γ2
y a(x, y, ξ)D

δ3
x (1− ϕ0(x, ξ))dξ

∣∣∣∣

≤ |x||k||y||h|
∑

γ1+γ2=γ

δ1+δ2+δ3=δ

γ!δ!

γ1!γ2!δ1!δ2!δ3!
C |γ2|+|δ2|+|δ3|(γ2!δ2!δ3!)

ν〈x− y〉|γ2+δ2| ·

· exp
[
a(|x| 1s + |y| 1s )

] ∫

〈ξ〉≤R

〈ξ〉τ+|γ1+δ1|d−ξ.
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Now, a(x, y, ξ) is supported on
(
R

2n \ Ω 1
2

)
× R

n and in this region |y| ≤ 3
2
〈x〉 so, there exist

constants C1, C2 > 0 depending on R such that

sup
(x,y)∈R2n

∣∣xkyhDδ
xD

γ
yK(x, y)

∣∣ ≤ C1R
|k|+|h|C

|γ|+|δ|
2 (γ!δ!)ν ,

so K ∈ Sν(R
2n) ⊂ Sµ+ν−1(R

2n). Consider now

xkyhDδ
xD

γ
yIα(x, y) =

∑

06=β≤α

1

β!(α− β)!

∑

δ1+δ2+δ3=δ

δ!

δ1!δ2!δ3!
(−1)|γ|xkyh ·

·
∫

Rn

ei〈x−y,ξ〉ξγ+δ1Dδ2
x D

β
ξϕ|α|(x, ξ)D

δ3
x [(Dα−β

ξ ∂αy )a)(x, x, ξ)]dξ

=
∑

06=β≤α

1

β!(α− β)!

∑

δ1+δ2+δ3=δ

δ!

δ1!δ2!δ3!
(−1)|γ|(−i)hxk ·

·
∫

Rn

e−i〈y,ξ〉∂hξ

[
ei〈x,ξ〉ξγ+δ1Dδ2

x D
β
ξϕ|α|(x, ξ)D

δ3
x [(Dα−β

ξ ∂αy a)(x, x, ξ)]
]
d−ξ.

We need the estimates for (x, ξ) ∈ suppDβ
ξϕ|α|(x, ξ) ⊂ Q2R|α|µ+ν−1 \QR|α|µ+ν−1 . Then, there exist

C1, C2, C3 > 0 such that
∣∣xkyhDδ

xD
γ
yIα(x, y)

∣∣ ≤ C
|h|+|k|+1
1 C

|α|
2 C

|γ|+|δ|
3 (k!h!γ!δ!)s(α!)ν〈x〉−|α| ·

·
∑

06=β≤α

(β!)µ−1 [(α− β)!]µ−1

(
1

R|α|µ+ν−1

)|β|

ec|x|
1
s

∫

〈ξ〉≤2R|α|µ+ν−1

〈ξ〉m−|α−β|d−ξ

with C2 independent of R. Now, since µ+ ν − 1 < s and |x| ≤ R|α|µ+ν−1, we have that

C
|α|
2 (α!)ν〈x〉−|α|

∑

06=β≤α

(β!)ν−1 [(α− β)!]ν−1

(
1

R|α|µ+ν−1

)|β|

ec|x|
1
s

∫

〈ξ〉≤2R|α|µ+ν−1

〈ξ〉−|α−β|dξ ≤
(
C4

R

)|α|

with C4 independent of R. Finally, we conclude that

sup
(x,y)∈R2n

∣∣xkyhDδ
xD

γ
yIα(x, y)

∣∣ ≤ C |h|+|k|+1C
|γ|+|δ|
2 (k!h!γ!δ!)µ+ν−1

(
C4

R

)|α|

.

Choosing R > C4, we obtain that
∑
α6=0

Iα ∈ Sµ+ν−1(R
2n).

Arguing as for Iα, we can prove that also

sup
(x,y)∈R2n

∣∣xkyhDδ
xD

γ
yWN (x, y)

∣∣ ≤ C
|h|+|k|+1
1 C

|γ|+|δ|
2 (h!k!γ!δ!)2ν−1

(
C

R

)N

with C independent of R, which gives, for R sufficiently large, that
∞∑

N=0

WN is in Sµ+ν−1(R
2n).

This concludes the proof. �

As a consequence of the previous theorem we obtain the two following results.

Proposition A.12. Let a ∈ SG
τ,∞
µ,ν,s(R

n) with s > µ + ν − 1 and let tA and A∗ be respectively
the transpose and the L2-adjoint of A = a(x,D) defined by

(A.13) 〈tAu, v〉 = 〈u,Av〉, u ∈ (S θ
s )

′(Rn), v ∈ S
θ
s (R

n).

and

(A.14) 〈A∗u, v〉L2 = 〈u,Av〉L2, u, v ∈ S
θ
s (R

n).
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Then, tA = B1 +R1 and A∗ = B2 +R2 where Rj , j = 1, 2, are Sµ+ν−1-regularizing operators
and Bj = bj(x,D), j = 1, 2, with bj ∈ SG

∞
µ,ν,s(R

n) with

b1(x, ξ) ∼
∑

j≥0

∑

|α|=j

(α!)−1∂αξD
α
xa(x,−ξ)

and

b2(x, ξ) ∼
∑

j≥0

∑

|α|=j

(α!)−1∂αξ D
α
xa(x, ξ)

in FSτ,∞
µ,ν,s(R

2n).

Proof. By the formula (A.13), tP is defined by

tAu(x) =

∫

R2n

ei〈x−y,ξ〉a(y,−ξ)u(y)dyd−ξ, u ∈ S
θ
s (R

n).

Thus, tA is an operator with amplitude a(y,−ξ) ∈ Πτ,∞
µ,ν,s(R

3n). By Theorem A.11, tA =
b1(x,D) +R1 where R1 is Sµ+ν−1-regularizing and b1 ∈ SGτ,∞

µ,ν,s(R
n), with

b1(x, ξ) ∼
∑

j≥0

∑

|α|=j

(α!)−1∂αξD
α
xa(x,−ξ).

The proof is similar for the adjoint. �

Theorem A.13. Let a ∈ SG
τ,∞
µ,ν,s(R

2n), b ∈ SG
τ ′,∞
µ,ν,s(R

2n), with s > µ+ ν− 1. Then there exists

c ∈ SG
τ+τ ′,∞
µ,ν,s (R2n) such that a(x,D)b(x,D) = c(x,D) + R, where R is a Sµ+ν−1-regularizing

operator and

c(x, ξ) ∼
∑

j≥0

∑

|α|=j

α!−1∂αξ a(x, ξ)D
α
xb(x, ξ) in FSτ+τ ′,∞

µ,ν,s (R2n).

Proof. We can write B = t(tB). Then, by Theorem A.11 and Proposition A.12, B = B1 + R1,
where R1 is Sµ+ν−1-regularizing and

(A.15) B1u(x) =

∫

R2n

ei〈x−y,ξ〉b1(y, ξ)u(y)dyd
−ξ

with b1(y, ξ) ∈ SGτ,∞
µ,ν,s(R

2n), b1(y, ξ) ∼
∑
α

(α!)−1∂αξD
α
y b(y,−ξ). From (A.15) it follows that

B̂1u(ξ) =

∫

Rn

e−i〈y,ξ〉b1(y, ξ)u(y)dy,

from which we deduce that

ABu(x) =

∫

R2n

ei〈x−y,ξ〉a(x, ξ)b1(y, ξ)u(y)dyd
−ξ+ AR1u(x).

We observe that a(x, ξ)b1(y, ξ) ∈ Πτ+τ ′,∞
µ,ν,s (R3n), then we may apply Theorem A.11 and obtain

that
ABu(x) = c(x,D)u(x) +Ru(x)

wher R is Sµ+ν−1-regularizing and c ∈ SGτ+τ ′,∞
µ,ν,s (Rn) with

c(x, ξ) ∼
∑

α

(α!)−1∂αξ a(x, ξ)D
α
xb(x, ξ).

�
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Remark A.14. It is easy to prove that if a ∈ SG
τ,∞
µ,ν,s(R

2n), b ∈ SG
τ ′,∞
µ,ν,s(R

2n) with a ∼
∑
j≥0

aj in

FSτ,∞
µ,ν,s(R

2n) and b ∼ ∑
j≥0

bj in FSτ ′,∞
µ,ν,s (R

2n), then a(x,D)b(x,D) = c(x,D) + R(x,D) where R

is Sµ+ν−1-regularizing and

c(x, ξ) ∼
∑

j≥0

∑

|α|+h+k=j

(α!)−1∂αξ ah(x, ξ)D
α
xbk(x, ξ) in FSτ+τ ′,∞

µ,ν,s (R2n).

Remark A.15. We remark that replacing the condition s > µ+ν−1 by θ > µ+ν−1 (resp. by
min{s, θ} > µ+ν−1), analogous versions of Theorems A.11, A.12,A.13 can be formulated and
proved for the class SG

∞,τ
µ,ν,θ(R

2n) (resp. SG
∞
µ,ν,s,θ(R

2n)). Notice that if min{s, θ} > µ + ν − 1,
then the remainder terms in Proposition A.9 and in Theorems A.11, A.12,A.13 are in turn
(S θ

s )-regularizing, that is they map (S θ
s )

′(Rn) into S θ
s (R

n), since Sµ+ν−1 ⊂ S θ
s (R

n). We
do not give the proof of these parallel results since they follow the same arguments as in the
proofs of Theorems A.11, A.12,A.13. On the other hand we can use them to prove the following
conjugation theorems.

Proposition A.16. Let p ∈ SG
m
µ,ν(R

2n), m = (m1, m2) ∈ R
2. Then for every ρ ∈ R and for

every θ > µ+ ν − 1 the operator

p1,ρ(x,D) = eρ〈D〉
1
θ ◦ p(x,D) ◦ e−ρ〈D〉

1
θ = p(x,D) + qρ(x,D) + r̃1(x,D),

for some qρ ∈ SG
(m1−1+1/θ,m2−1)
ν (R2n) and r̃1 ∈ Sµ+ν−1(R

2n).

Proof. First of all we observe that by Proposition A.3 we have that eρ〈ξ〉
1
θ and p(x, ξ)e−ρ〈ξ〉

1
θ

both belong to SG∞,m2

µ,ν,θ (R2n). Then the symbol of the operator p1,ρ(x,D) is such that

p1,ρ(x, ξ) = p(x, ξ) + qρ(x, ξ) + r̃1(x,D)

with r̃1 ∈ Sµ+ν−1(R
2n) and qρ ∼

∑
j≥1

qρ,j in FS∞,m2

µ,ν,θ (R2n), where

qρ,j(x, ξ) =
∑

|α|=j

(α!)−1∂αξ e
ρ〈ξ〉

1
θDα

x

(
p(x, ξ)e−ρ〈ξ〉

1
θ

)
(A.16)

=
∑

|α|=j

(α!)−1e−ρ〈ξ〉
1
θ ∂αξ e

ρ〈ξ〉
1
θDα

xp(x, ξ).

Estimating by Faà di Bruno formula we obtain that

e−ρ〈ξ〉
1
θ ∂αξ e

ρ〈ξ〉
1
θ =

|α|∑

h=1

ρh

h!

∑

α1+...+αh=α

αi 6=0

α!

α1! . . . αh!

h∏

µ=1

∂
αµ

ξ 〈ξ〉 1
θ

from which it follows that

|qρ,j(x, ξ)| ≤
∑

|α|=j

|α|∑

h=1

ρh

h!

∑

α1+...+αh=α

αi 6=0

C |α|+1α!ν(α1! . . . αh!)
µ−1〈ξ〉m1+

h
θ
−|α|〈x〉m2−|α|

≤ C2j+1
1 (j!)µ+ν−1〈ξ〉m1−(1− 1

θ )j〈x〉m2−j.

Similarly we can estimate the derivatives of qρ,j and we obtain that

|∂γξ ∂δxqρ,j(x, ξ)| ≤ C |γ|+|δ|+2j+1(γ!)µ(δ!)ν(j!)µ+ν−1〈ξ〉m1−(1− 1
θ )j−|γ|〈x〉m2−j−|δ|, j ≥ 1,
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for some positive constant C independent of j, γ, δ.
Then we can repeat readily the argument of the proof of Proposition A.8 by replacing QBjµ+ν−1

by the set

Qθ
Bjµ+ν−1 = {(x, ξ) ∈ R

2n : 〈ξ〉1− 1
θ < Bjµ+ν−1 and 〈x〉 < Bjµ+ν−1}

and Qe
Bjµ+ν−1 by Qθ,e

Bjµ+ν−1 = R
2n \Qθ

Bjµ+ν−1 . Then we obtain that qρ ∈ SG(m1+1/θ−1,m2−1)
µ,ν (R2n).

Details are left to the reader. �

Proposition A.17. Let p ∈ SG
m
µ,ν(R

2n) for some m ∈ R
2. Then for every ρ ∈ R and for every

s > µ+ ν − 1 the operator

p2,ρ(x,D) = eρ〈x〉
1
s ◦ p(x,D) ◦ e−ρ〈x〉

1
s = p(x,D) + rρ(x,D) + r̃2(x,D),

for some rρ ∈ SG
(m1−1,m2−1+1/s)
ν (R2n) and r̃2 ∈ Sµ+ν−1(R

2n).

Proof. We observe that the symbols eρ〈x〉
1
s p(x, ξ) and e−ρ〈x〉

1
s are both in SGm1,∞

µ,ν,s (R2n) and
that, by Theorem A.13 the symbol of the composed operator is, modulo terms in Sµ+ν−1(R

2n),
the sum of p(x, ξ) and of a symbol rρ(x, ξ) such that

rρ(x, ξ) ∼
∑

j≥1

∑

|α|=j

(α)−1∂αξ

(
eρ〈x〉

1
s p(x, ξ)

)
Dα

xe
−ρ〈x〉

1
s

=
∑

j≥1

∑

|α|=j

(α)−1∂αξ p(x, ξ)e
ρ〈x〉

1
sDα

xe
−ρ〈x〉

1
s in FSm1,∞

µ,ν,s (R2n).

Hence we can proceed as in the proof of Proposition A.16 by simply interchanging the roles of
x and ξ. We leave the details to the reader. �

By combination of the previous two propositions we obtain the following continuity result.

Theorem A.18. Let p ∈ SG
m′

µ,ν(R
2n) for some m′ = (m′

1, m
′
2) ∈ R

2. Then, for every m, ρ ∈ R
2

and s, θ such that min{s, θ} > µ+ ν−1 the operator p(x,D) extends to a continuous map from

Hm
ρ,s,θ(R

n) into Hm−m′

ρ,s,θ (Rn).

Proof. Applying first Proposition A.16

eρ1〈D〉
1
θ ◦ p(x,D) ◦ e−ρ1〈D〉

1
θ = p(x,D) + qρ1(x,D) + r̃1(x,D),

where qρ1 ∈ SG(m′
1−1+1/θ,m′

2−1)
µ,ν (R2n), and r̃1 ∈ Sµ+ν−1(R

2n). We now apply Proposition A.17
and we get

eρ2〈x〉
1
s ◦(p(x,D)+qρ1(x,D))◦e−ρ2〈x〉

1
s = p(x,D)+qρ1(x,D)+rρ2(x,D)+qρ1,ρ2(x,D)+ r̃2(x,D),

with rρ2 ∈ SG(m′
1−1,m′

2−1+1/s)
µ,ν (R2n), qρ1,ρ2 ∈ SG(m′

1−2+1/θ,m′
2−2+1/s)

µ,ν (R2n) and r̃2 ∈ Sµ+ν−1(R
2n).

In particular, we have that the operator

qρ(x,D) = p(x,D) + qρ1(x,D) + rρ2(x,D) + qρ1,ρ2(x,D)

is continuous from Hm into Hm−m′

for every m ∈ R
2. Moreover, since min{s, θ} > µ + ν − 1

then Sµ+ν−1(R
2n) ⊂ S θ

s (R
2n), hence the operators r̃j, j = 1, 2 map (S θ

s )
′(Rn) into S θ

s (R
n).
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Hence, the same holds for the operators eρ2〈x〉
1
s ◦ r̃j(x,D) ◦ e−ρ2〈x〉

1
s , j = 1, 2. Hence we have

‖p(x,D)u‖
Hm−m′

ρ,s,θ
= ‖eρ2〈x〉

1
s eρ1〈D〉

1
θ ◦ p(x,D) ◦ e−ρ1〈D〉

1
θ e−ρ2〈x〉

1
s (eρ2〈x〉

1
s eρ1〈D〉

1
θ u)‖Hm−m′

≤ ‖qρ(x,D)(eρ2〈x〉
1
s eρ1〈D〉

1
θ u)‖Hm−m′

+‖eρ2〈x〉
1
s ◦ r̃1(x,D) ◦ e−ρ2〈x〉

1
s (eρ2〈x〉

1
s eρ1〈D〉

1
θ u)‖Hm−m′

+‖r̃2(x,D)(eρ2〈x〉
1
s eρ1〈D〉

1
θ u)‖Hm−m′

≤ C‖eρ2〈x〉
1
s eρ1〈D〉

1
θ u‖Hm = C‖u‖Hm

ρ,s,θ
.

�

Remark A.19. From Theorem A.18 it follows that any operator with symbol p ∈ SG
m′

1,ν(R
2n)

with ν > 1 extends to a linear continuous map from Hm
ρ,s,θ into Hm−m′

ρ,s,θ for every ρ,m ∈ R
2 and

min{s, θ} > ν. This can be obtained regarding p as a symbol in SG
m′

µ,ν(R
2n) for every µ > 1

and applying Theorem A.18. The condition min{s, θ} > µ+ ν − 1 in the theorem then reduces
to min{s, θ} > ν by choosing µ arbitrarily close to 1.

We report now the proofs of Propositions 2.4, 2.6 and Theorem 2.7.

Proof of Proposition 2.4. We can write, for any δ ∈ R :

eλ(x,D)u(x) = eδ〈x〉
1
s a(x,D)u(x),

where a(x, ξ) = e−δ〈x〉
1
s +λ(x,ξ). It is easy to verify that if δ > C(λ) = sup(x,ξ)∈R2n λ(x, ξ)/〈x〉1/s,

then a ∈ SG(0,0)
ν (R2n), and then by Theorem A.18 a(x,D) is bounded on Hm

ρ,s,θ for every
m, ρ ∈ R

2 and for every min{s, θ} > 2ν − 1. Hence we have

‖eλ(x,D)u‖Hm
ρ−δe2,s,θ

= ‖a(x,D)u‖Hm
ρ,s,θ

≤ C‖u‖Hm
ρ,s,θ

for every u ∈ Hm
ρ,s,θ. The assertion is then proved. �

Proof of Proposition 2.6. We shall prove the result only for the first composition, the second
being similar. By Proposition A.3 the symbol eλ(x,ξ) ∈ SG0,∞

µ,s (R
2n) whereas the operator Re−λ

can be regarded as an operator with amplitude in Π0,∞
µ,s (R

3n), hence, by Proposition A.11,
Theorem A.13 and Remark A.14, we have:

eλ(x,D) ◦R e−λ = I + r1(x,D) + r̃1(x,D),

where r̃1 ∈ Σs(R
2n) and r1 has the asymptotic expansion (cf. Definition A.7) r1 ∼

∑
j≥1

r1,j with

r1,j(x, ξ) =
∑

|α|+k=j

∑

|β|=k

(α!β!)−1∂αξ e
λ(x,ξ) ·Dα+β

x ∂βξ e
−λ(x,ξ)(A.17)

=
∑

|γ|=j

(γ!)−1∂γξ
[
eλ(x,ξ)Dγ

xe
−λ(x,ξ)

]
.

By the results of the calculus, the symbol r1(x, ξ) turns out to be in SG0,∞
µ,s (R

2n). To conclude
the proof, we need to prove that indeed r1 has finite orders, namely r1 ∈ SG(0,−1+1/s)

µ (R2n).
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Now, using Faà di Bruno formula, we have

eλ(x,ξ)Dγ
xe

−λ(x,ξ) =

|γ|∑

h=1

(−1)|γ|

h!

∑

γ1+...+γh=γ

γi 6=0

γ!

γ1! . . . γh!

h∏

κ=1

Dγκ
x λ(x, ξ).

Hence, Leibniz formula gives

r1,j(x, ξ) =
∑

|γ|=j

|γ|∑

h=1

(−1)|γ|

h!

∑

γ1+...+γh=γ

γi 6=0

∑

γ′
1+...+γ′

h=γ

γ!

γ1! . . . γh!γ′1! . . . γ
′
h!

×∂γ
′
1

ξ D
γ1
x λ(x, ξ) · . . . · ∂

γ′
h

ξ D
γh
x λ(x, ξ),

from which it follows that

|r1,j(x, ξ)| ≤
∑

|γ|=j

|γ|∑

h=1

γ!

h!

∑

γ1+...+γh=γ

γi 6=0

∑

γ′
1+...+γ′

h=γ

C2|γ|(γ1! . . . γh!γ
′
1! . . . γ

′
h!)

µ−1〈x〉h
s
−|γ|〈ξ〉−|γ|

≤ C2j+1
1 (j!)2µ−1〈x〉−(1− 1

s)j〈ξ〉−j
h .

Similarly we can estimate the derivatives of r1,j and we obtain that

|∂γξ ∂δxr1,j(x, ξ)| ≤ C |γ|+|δ|+2j+1(γ!δ!)µ(j!)2µ−1〈ξ〉−j−|γ|〈x〉−(1− 1
s)j−|δ|, j ≥ 1,

for some positive constant C independent of j, γ, δ.
Moreover, we observe that r1,0 = 0 in the asymptotic expansion of r1. Then we can repeat
readily the argument of the proof of Proposition A.8 by replacing QBj2µ−1 by the set

Qs
Bj2µ−1 = {(x, ξ) ∈ R

2n : 〈x〉1− 1
s < Bj2µ−1 and 〈ξ〉 < Bj2µ−1}

andQe
Bj2µ−1 byQs,e

Bj2µ−1 = R
2n\Qs

Bj2µ−1 .We obtain in this way that r1 is in fact in SG(0,1/s−1)
µ (R2n).

Deatils are left to the reader. �

Proof of Theorem 2.7. First of all we observe that

(eλ(x,D))−1 =R e−λ
∑

j≥0

(−r1(x,D))j =R e−λ ◦ (I − r1,1(x,D) + s(x,D)),

where s ∈ SG(0,2(1/s−1))(R2n). By Theorem A.13 we have that the symbol of eλ(x,D)a(x,D)Re−λ

has the asymptotic expansion
∑

j≥0 aj(x, ξ) where

aj(x, ξ) =
∑

j≥0

∑

|α|+h+k=j

∑

|γ|=h

∑

|δ|=k

(α!γ!δ!)−1∂αξ
[
∂γξ e

λ(x,ξ) ·Dγ
xa(x, ξ)

]
∂δξD

α+δ
x e−λ(x,ξ)

=
∑

|β|+h=j

(β!)−1
∑

|γ|=h

∂βξ
[
(γ!)−1∂γξ e

λ(x,ξ)Dγ
xa(x, ξ)D

β
xe

−λ(x,ξ)
]
.

Observe that a0 = a and a1(x, ξ) = q(x, ξ) −
∑n

ℓ=1 a(x, ξ)(∂ξℓDxℓ
λ)(x, ξ), with q as in (2.11).

Using Faà di Bruno formula and Leibniz formula and arguing as in the proof of Proposition 2.6
it is easy to prove that for j ≥ 2:

|∂γξ ∂δxaj(x, ξ)| ≤ C |γ|+|δ+2j(γ!δ!)ν(j!)2ν−1〈ξ〉m1−|γ|−j〈x〉m2−(1− 1
s)j−|δ|
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for some positive constant C. Let us now consider the composition of eλ(x,D)a(x,D)Re−λ(x,D)
with −r1,1(x,D). It is easy to notice that the leading term in −r1,1(x, ξ) is

∑n
ℓ=1 ∂ξℓDxℓ

λ(x, ξ).
Then it is easy to verify that

eλ(x,D)a(x,D)Re−λ(x,D) ◦ r1,1(x,D) = op

(
n∑

ℓ=1

a(x, ξ)(∂ξℓDxℓ
λ)(x, ξ)

)
+ r(x,D)

with r ∈ SG(m1−2,m2+2(1/s−1))(R2n). Summing up, the symbol of eλ(x,D)a(x,D)(eλ(x,D))−1 is
given, modulo terms in SG(m1−2,m2−2(1−1/s))(R2n), by a(x, ξ) + q(x, ξ) with q as in (2.11). �
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