This paper addresses the challenge of forecasting the future values of gas turbine measureable quantities. The final aim is the simulation of “virtual sensors” capable of producing statistically coherent measurements aimed at replacing anomalous observations discarded from the time series. Among the different available approaches, the Bayesian forecasting method (BFM) adopted in this paper uses the information held by a pool of observations as knowledge base to forecast the values at a future state. The BFM algorithm is applied in this paper to Siemens field data to assess its prediction capability, by considering two different approaches, i.e., single-step prediction (SSP) and multistep prediction (MSP). While SSP predicts the next observation by using true data as base of knowledge, MSP uses previously predicted data as base of knowledge to perform the prediction of future time steps. The results show that BFM single-step average prediction error can be very low, when filtered field data are analyzed. On the contrary, the average prediction error achieved in case of BFM multistep prediction is remarkably higher. To overcome this issue, the BFM single-step prediction scheme is also applied to clusters of time-wise averaged data. In this manner, an acceptable average prediction error can be achieved by considering clusters composed of 60 observations.

Capability of the Bayesian Forecasting Method to Predict Field Time Series

Gatta N.
Primo
;
Venturini M.
Secondo
;
Manservigi L.;
2018

Abstract

This paper addresses the challenge of forecasting the future values of gas turbine measureable quantities. The final aim is the simulation of “virtual sensors” capable of producing statistically coherent measurements aimed at replacing anomalous observations discarded from the time series. Among the different available approaches, the Bayesian forecasting method (BFM) adopted in this paper uses the information held by a pool of observations as knowledge base to forecast the values at a future state. The BFM algorithm is applied in this paper to Siemens field data to assess its prediction capability, by considering two different approaches, i.e., single-step prediction (SSP) and multistep prediction (MSP). While SSP predicts the next observation by using true data as base of knowledge, MSP uses previously predicted data as base of knowledge to perform the prediction of future time steps. The results show that BFM single-step average prediction error can be very low, when filtered field data are analyzed. On the contrary, the average prediction error achieved in case of BFM multistep prediction is remarkably higher. To overcome this issue, the BFM single-step prediction scheme is also applied to clusters of time-wise averaged data. In this manner, an acceptable average prediction error can be achieved by considering clusters composed of 60 observations.
2018
Gatta, N.; Venturini, M.; Manservigi, L.; Ceschini, G. F.; Bechini, G.
File in questo prodotto:
File Dimensione Formato  
124bis.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
gtp_140_12_121013.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2398396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact