We study the geometry of some varieties of sums of powers related to the Klein quartic. This allows us to describe the birational geometry of certain moduli spaces of abelian surfaces. In particular we show that the moduli space A2(1,7)sym−of (1,7)-polarized abelian surfaces with a symmetric theta structure and an odd theta characteristic is unirational by showing that it admits a dominant morphism from a unirational conic bundle.
Varieties of sums of powers and moduli spaces of (1,7)-polarized abelian surfaces
Massarenti, Alex
Co-primo
2018
Abstract
We study the geometry of some varieties of sums of powers related to the Klein quartic. This allows us to describe the birational geometry of certain moduli spaces of abelian surfaces. In particular we show that the moduli space A2(1,7)sym−of (1,7)-polarized abelian surfaces with a symmetric theta structure and an odd theta characteristic is unirational by showing that it admits a dominant morphism from a unirational conic bundle.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Alex_Michele_JGP.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
357.77 kB
Formato
Adobe PDF
|
357.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1704.06964.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
205.88 kB
Formato
Adobe PDF
|
205.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.