We study the geometry of some varieties of sums of powers related to the Klein quartic. This allows us to describe the birational geometry of certain moduli spaces of abelian surfaces. In particular we show that the moduli space A2(1,7)sym−of (1,7)-polarized abelian surfaces with a symmetric theta structure and an odd theta characteristic is unirational by showing that it admits a dominant morphism from a unirational conic bundle.

Varieties of sums of powers and moduli spaces of (1,7)-polarized abelian surfaces

Massarenti, Alex
Co-primo
2018

Abstract

We study the geometry of some varieties of sums of powers related to the Klein quartic. This allows us to describe the birational geometry of certain moduli spaces of abelian surfaces. In particular we show that the moduli space A2(1,7)sym−of (1,7)-polarized abelian surfaces with a symmetric theta structure and an odd theta characteristic is unirational by showing that it admits a dominant morphism from a unirational conic bundle.
2018
Bolognesi, Michele; Massarenti, Alex
File in questo prodotto:
File Dimensione Formato  
Alex_Michele_JGP.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 357.77 kB
Formato Adobe PDF
357.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1704.06964.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 205.88 kB
Formato Adobe PDF
205.88 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2396160
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact