The key role of T cells in the pathogenesis of cutaneous psoriasis has been well described in the last decade and the knowledge of the relative role of the different subsets of T cells in psoriasis pathogenesis has considerably evolved. Now, it is clear that IL-17A-producing T cells, including Th17/Tc17, have a central role in the pathogenesis of cutaneous psoriasis and therapies blocking the IL-17A pathway show high clinical efficacy. By contrast, the contribution of IFNγ-producing T cells has progressively become less clear because of the lack of efficacy of anti-IFNγ antibodies in clinical studies. In parallel, the role of CD8+T cells specific for self-antigens has been revived and increasing evidence now indicates that in psoriatic skin the majority CD8+T cells are present in the form of epidermal tissue-resident memory T cells. In the last years it also emerged the possibility of a contribution of T cell recirculation in the pathogenesis of psoriasis and its systemic manifestations. The aim of this review is to define a hierarchy for the different subsets of T cells in the T cell-mediated inflammatory cascade in psoriatic skin. This analysis will possibly help to distinguish the subsets that initiate the disease, those involved in the establishment of the self-sustaining amplification loop that leads to the cutaneous clinical manifestations and finally the subsets that act as downstream players in established lesions. Specific T cell subpopulations finally will be considered for their possible role in propagating inflammation at distant sites and for representing a link with systemic inflammation and cardiovascular comorbidities.

T cell hierarchy in the pathogenesis of psoriasis and associated cardiovascular comorbidities

Fabio Casciano
Primo
;
Paola Secchiero;Roberto Gambari;Eva Reali
Ultimo
2018

Abstract

The key role of T cells in the pathogenesis of cutaneous psoriasis has been well described in the last decade and the knowledge of the relative role of the different subsets of T cells in psoriasis pathogenesis has considerably evolved. Now, it is clear that IL-17A-producing T cells, including Th17/Tc17, have a central role in the pathogenesis of cutaneous psoriasis and therapies blocking the IL-17A pathway show high clinical efficacy. By contrast, the contribution of IFNγ-producing T cells has progressively become less clear because of the lack of efficacy of anti-IFNγ antibodies in clinical studies. In parallel, the role of CD8+T cells specific for self-antigens has been revived and increasing evidence now indicates that in psoriatic skin the majority CD8+T cells are present in the form of epidermal tissue-resident memory T cells. In the last years it also emerged the possibility of a contribution of T cell recirculation in the pathogenesis of psoriasis and its systemic manifestations. The aim of this review is to define a hierarchy for the different subsets of T cells in the T cell-mediated inflammatory cascade in psoriatic skin. This analysis will possibly help to distinguish the subsets that initiate the disease, those involved in the establishment of the self-sustaining amplification loop that leads to the cutaneous clinical manifestations and finally the subsets that act as downstream players in established lesions. Specific T cell subpopulations finally will be considered for their possible role in propagating inflammation at distant sites and for representing a link with systemic inflammation and cardiovascular comorbidities.
2018
Casciano, Fabio; Pigatto, Paolo; Secchiero, Paola; Gambari, Roberto; Reali, Eva
File in questo prodotto:
File Dimensione Formato  
Casciano et al. Front Immunol.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 983.58 kB
Formato Adobe PDF
983.58 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2394362
Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 54
social impact