An efficient lithium-ion battery was assembled by using an enhanced sulfur-based cathode and a silicon oxide-based anode and proposed as an innovative energy-storage system. The sulfur–carbon composite, which exploits graphene carbon with a 3 D array (3DG-S), was synthesized by a reduction step through a microwave-assisted solvothermal technique and was fully characterized in terms of structure and morphology, thereby revealing suitable features for lithium-cell application. Electrochemical tests of the 3DG-S electrode in a lithium half-cell indicated a capacity ranging from 1200 to 1000 mAh g−1at currents of C/10 and 1 C, respectively. Remarkably, the Li-alloyed anode, namely, LiySiOx–C prepared by the sol–gel method and lithiated by surface treatment, showed suitable performance in a lithium half-cell by using an electrolyte designed for lithium–sulfur batteries. The LiySiOx–C/3DG-S battery was found to exhibit very promising properties with a capacity of approximately 460 mAh gS−1delivered at an average voltage of approximately 1.5 V over 200 cycles, suggesting that the characterized materials would be suitable candidates for low-cost and high-energy-storage applications.
A Lithium-Ion Battery using a 3 D-Array Nanostructured Graphene–Sulfur Cathode and a Silicon Oxide-Based Anode
Di Lecce, Daniele;Hassoun, Jusef
2018
Abstract
An efficient lithium-ion battery was assembled by using an enhanced sulfur-based cathode and a silicon oxide-based anode and proposed as an innovative energy-storage system. The sulfur–carbon composite, which exploits graphene carbon with a 3 D array (3DG-S), was synthesized by a reduction step through a microwave-assisted solvothermal technique and was fully characterized in terms of structure and morphology, thereby revealing suitable features for lithium-cell application. Electrochemical tests of the 3DG-S electrode in a lithium half-cell indicated a capacity ranging from 1200 to 1000 mAh g−1at currents of C/10 and 1 C, respectively. Remarkably, the Li-alloyed anode, namely, LiySiOx–C prepared by the sol–gel method and lithiated by surface treatment, showed suitable performance in a lithium half-cell by using an electrolyte designed for lithium–sulfur batteries. The LiySiOx–C/3DG-S battery was found to exhibit very promising properties with a capacity of approximately 460 mAh gS−1delivered at an average voltage of approximately 1.5 V over 200 cycles, suggesting that the characterized materials would be suitable candidates for low-cost and high-energy-storage applications.File | Dimensione | Formato | |
---|---|---|---|
10.1002@cssc.201800242.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.89 MB
Formato
Adobe PDF
|
1.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Di Lecce_A Lithium-Ion Battery using a 3D-Array Nanostructured Graphene-Sulfur Cathode and a Silicon Oxide-Based Anode_AAM.pdf
accesso aperto
Descrizione: post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.