Centrifugal compressor impellers and shafts are subject to severe fluctuating axial and radial forces when operating in surge. These forces can cause severe damage to the close clearance components of a centrifugal compressor such as the thrust and radial bearings, interstage and dry gas seals, and balance piston. Being able to accurately quantify the cyclic surge forces on the close clearance components of the compressor allows the user to determine whether an accidental surge event, or emergency shutdown (ESD) transient, has caused damage requiring inspection, repair, or part replacement. For the test, a 700 hp (1/4520 kW) industrial air centrifugal compressor was operated in surge at speeds ranging from 7000 to 13,000 rpm and pressure ratios from 1.2 to 1.8. The axial surge forces were directly measured using axial load cells on the thrust bearings. Suction and discharge pressures, proximity probe axial shaft position, flows, and temperatures were also measured. Time domain and frequency plots of axial vibration and dynamic pulsations showed the impact of the operating conditions on surge force amplitudes and frequencies. A surge severity coefficient was also derived as a simple screening tool to evaluate the magnitude of potential damage to a compressor during surge.
Measurement and Prediction of Centrifugal Compressor Axial Forces during Surge - Part I: Surge Force Measurements
Munari, Enrico;Pinelli, MicheleUltimo
2018
Abstract
Centrifugal compressor impellers and shafts are subject to severe fluctuating axial and radial forces when operating in surge. These forces can cause severe damage to the close clearance components of a centrifugal compressor such as the thrust and radial bearings, interstage and dry gas seals, and balance piston. Being able to accurately quantify the cyclic surge forces on the close clearance components of the compressor allows the user to determine whether an accidental surge event, or emergency shutdown (ESD) transient, has caused damage requiring inspection, repair, or part replacement. For the test, a 700 hp (1/4520 kW) industrial air centrifugal compressor was operated in surge at speeds ranging from 7000 to 13,000 rpm and pressure ratios from 1.2 to 1.8. The axial surge forces were directly measured using axial load cells on the thrust bearings. Suction and discharge pressures, proximity probe axial shaft position, flows, and temperatures were also measured. Time domain and frequency plots of axial vibration and dynamic pulsations showed the impact of the operating conditions on surge force amplitudes and frequencies. A surge severity coefficient was also derived as a simple screening tool to evaluate the magnitude of potential damage to a compressor during surge.File | Dimensione | Formato | |
---|---|---|---|
gtp_140_01_012601.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
11392_2384847_pre_print_Pinelli.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.