In this study, we describe the design and synthesis of new N5-substituted-2-(2-furanyl) thiazolo[5,4-d]pyrimidine-5,7-diamines (2-18) and their pharmacological characterization as A2A adenosine receptor (AR) antagonists by using in vitro and in vivo assays. In competition binding experiments two derivatives (13 and 14) emerged as outstanding ligands showing two different affinity values (KH and KL) for the hA2A receptor with the high affinity KH value in the femtomolar range. The in vitro functional activity assays, performed by using cyclic AMP experiments, assessed that they behave as potent inverse agonists at the hA2A AR. Compounds 13 and 14 were evaluated for their antinociceptive activity in acute experimental models of pain showing an effect equal to or greater than that of morphine. Overall, these novel inverse agonists might represent potential drug candidates for an alternative approach to the management of pain.
Design, Synthesis, and Pharmacological Characterization of 2-(2-Furanyl)thiazolo[5,4-d]pyrimidine-5,7-diamine Derivatives: New Highly Potent A2A Adenosine Receptor Inverse Agonists with Antinociceptive Activity
VINCENZI, Fabrizio;RAVANI, Annalisa;BOREA, Pier Andrea;VARANI, KatiaUltimo
2016
Abstract
In this study, we describe the design and synthesis of new N5-substituted-2-(2-furanyl) thiazolo[5,4-d]pyrimidine-5,7-diamines (2-18) and their pharmacological characterization as A2A adenosine receptor (AR) antagonists by using in vitro and in vivo assays. In competition binding experiments two derivatives (13 and 14) emerged as outstanding ligands showing two different affinity values (KH and KL) for the hA2A receptor with the high affinity KH value in the femtomolar range. The in vitro functional activity assays, performed by using cyclic AMP experiments, assessed that they behave as potent inverse agonists at the hA2A AR. Compounds 13 and 14 were evaluated for their antinociceptive activity in acute experimental models of pain showing an effect equal to or greater than that of morphine. Overall, these novel inverse agonists might represent potential drug candidates for an alternative approach to the management of pain.File | Dimensione | Formato | |
---|---|---|---|
JMedChem Inverse.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
VARANI 11392-2360392-postprint.pdf
accesso aperto
Descrizione: post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
801.17 kB
Formato
Adobe PDF
|
801.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.