We prove that the steady state Navier–Stokes equations have a solution in an exterior Lipschitz domain of (Formula presented.), vanishing at infinity, provided the boundary datum belongs to (Formula presented.).

An existence and uniqueness theorem for the Navier–Stokes equations in dimension four

Coscia, Vincenzo
2018

Abstract

We prove that the steady state Navier–Stokes equations have a solution in an exterior Lipschitz domain of (Formula presented.), vanishing at infinity, provided the boundary datum belongs to (Formula presented.).
2018
Coscia, Vincenzo
File in questo prodotto:
File Dimensione Formato  
Coscia V., An existence and uniqueness theorem for the Navier Stokes equations in dimension four, Appl. Anal. 2016, in press.pdf

accesso aperto

Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 744.33 kB
Formato Adobe PDF
744.33 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2359714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact