

Applicable Analysis An International Journal

ISSN: 0003-6811 (Print) 1563-504X (Online) Journal homepage: http://www.tandfonline.com/loi/gapa20

An existence and uniqueness theorem for the Navier-Stokes equations in dimension four

Vincenzo Coscia

To cite this article: Vincenzo Coscia (2016): An existence and uniqueness theorem for the Navier-Stokes equations in dimension four, Applicable Analysis, DOI: 10.1080/00036811.2016.1263837

To link to this article: http://dx.doi.org/10.1080/00036811.2016.1263837

Published online: 02 Dec 2016.

Submit your article to this journal 🕑

Article views: 17

View related articles 🗹

🌔 View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gapa20

An existence and uniqueness theorem for the Navier–Stokes equations in dimension four

Vincenzo Coscia

Dipartimento di Matematica e Informatica, Università di Ferrara, Ferrara, Italy

ABSTRACT

We prove that the steady state Navier–Stokes equations have a solution in an exterior Lipschitz domain of \mathbb{R}^4 , vanishing at infinity, provided the boundary datum belongs to $L^3(\partial \Omega)$.

ARTICLE HISTORY Received 22 October 2016 Accepted 18 November 2016

COMMUNICATED BY G. Panasenko

KEYWORDS

Stationary Navier Stokes equations; 4D exterior Lipschitz domains; boundary-value problem

AMS SUBJECT CLASSIFICATIONS 76D05; 35Q30; 31B10; 76D03

1. Introduction

In this paper, we shall consider the steady–state boundary–value problem for the Navier–Stokes equations $^{\rm l}$

$$v \Delta \boldsymbol{u} - \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \nabla \boldsymbol{p} = \boldsymbol{0} \quad \text{in } \Omega, \\ \text{div } \boldsymbol{u} = 0 \quad \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{a} \quad \text{on } \partial \Omega \\ \lim_{r \to +\infty} \boldsymbol{u}(x) = \boldsymbol{0} \quad \text{on } \partial \Omega$$
 (1)

in the four-dimensional exterior domain

$$\Omega = \mathbb{R}^4 \setminus \bigcup_{i=1}^m \overline{\Omega}_i$$

where Ω_i are bounded Lipschitz domains with connected boundaries such that $\Omega_i \cup \Omega_j = \emptyset$, $i \neq j$. In (1), \boldsymbol{u} and p are the kinetic and pressure fields respectively, $\nu > 0$ is the kinematical viscosity coefficient and \boldsymbol{a} is an assigned field on $\partial \Omega$.

Strictly connected to (1) is its linearized version, the Stokes equations

$$\nu \Delta \boldsymbol{u} - \nabla \boldsymbol{p} = \boldsymbol{0} \quad \text{in } \Omega,$$

div $\boldsymbol{u} = 0 \quad \text{in } \Omega,$
 $\boldsymbol{u} = \boldsymbol{a} \quad \text{on } \partial \Omega$
$$\lim_{r \to +\infty} \boldsymbol{u}(x) = \boldsymbol{0} \quad \text{on } \partial \Omega.$$
 (2)

2 🔄 V. COSCIA

It is well known that if $\boldsymbol{a} \in L^3(\partial\Omega)$, then (2) has a solution²(\boldsymbol{u}_s, p_s) analytical in Ω , such that $\boldsymbol{u}_s = O(r^{-2}), p_s = O(r^{-3})$ and which satisfies (2)₃ in the sense of the non tangential convergence, *i.e*, there is a finite cone Γ such that

$$\lim_{x(\in\Gamma_{\xi})\to\xi} u(x) = a(\xi)$$
(3)

for almost all $\xi \in \partial \Omega$, where $\Gamma_{\xi} \subset \Omega$ is a cone with vertex at ξ , congruent to Γ .

In Section 3, we prove the following

Theorem 1: If $a \in L^3(\partial \Omega)$ and

$$\mathcal{F} = \frac{1}{4\omega} \sum_{i=1}^{m} \left| \int_{\partial \Omega_i} \boldsymbol{a} \cdot \boldsymbol{n} \right| \max_{\partial \Omega} \frac{1}{|\boldsymbol{x} - \boldsymbol{x}_i|^2} < \nu, \tag{4}$$

where ω is the measure of the surface of the unit ball of \mathbb{R}^4 , x_i fixed point of Ω_i , and \mathbf{n} is the outward (with respect to Ω) unit normal to $\partial \Omega$, then (1) has a solution $(\mathbf{u}, p) \in [L^4(\Omega) \cap C^{\infty}(\Omega)] \times C^{\infty}(\Omega)$. Moreover, \mathbf{u} is unique in $L^4(\Omega)$, provided $3 \|\mathbf{u}_s\|_{L^4(\Omega)} < 4\nu$ and

$$\|\boldsymbol{u}_{s}\|_{L^{4}(\Omega)} + \frac{\|\boldsymbol{u}_{s}\|_{L^{4}(\Omega)}^{2}}{\frac{4}{3}\left(\nu - \frac{3}{4}\|\boldsymbol{u}_{s}\|_{L^{4}(\Omega)}\right)} < \frac{4\nu}{3},$$
(5)

where \boldsymbol{u}_s is the solution to (2) in Ω with boundary datum \boldsymbol{a} .

In the next section, we collect the main preliminary tools we shall need to get our results. For domains of class $C^{1,1}$ and boundary data in $W^{1/4,4}(\partial \Omega)$ problem (2) in bounded domains has been considered by several authors (see p.297 of [1] and the references therein).

2. Preliminary results

The fundamental solution to (2) writes

$$\begin{aligned} \mathcal{U}_{ij}(x-y) &= -\frac{1}{4\omega\nu|x-y|^2} \left\{ \delta_{ij} + \frac{2(x_i - y_i)(x_j - y_j)}{|x-y|^2} \right\},\\ \varpi_i(x-y) &= \frac{x_i - y_i}{\omega|x-y|^4}. \end{aligned}$$
(6)

The Stokes simple layer potential with density $\boldsymbol{\psi} \in L^q(\partial \Omega)$ is defined by

$$\boldsymbol{v}[\boldsymbol{\psi}](x) = \int_{\partial\Omega} \boldsymbol{\mathcal{U}}(x-\xi) \cdot \boldsymbol{\psi}(\xi) d\boldsymbol{a}_{\xi},$$

$$P[\boldsymbol{\psi}](x) = \int_{\partial\Omega} \boldsymbol{\varpi} \left(x-\xi\right) \cdot \boldsymbol{\psi}(\xi) d\boldsymbol{a}_{\xi},$$

(7)

and is a solution to Stokes' Equations (2)_{1,2} in $\mathbb{R}^4 \setminus \partial \Omega$. The trace of (7)₁ on $\partial \Omega$ is a continuous operator

$$S: L^q(\partial\Omega) \to W^{1,q}(\partial\Omega).$$
 (8)

For q = 2, S is Fredholm with index zero and Kern $S = \text{Kern } S' = \{n\}, [2,3]$ where³

$$\mathcal{S}': W^{-1,2}(\partial\Omega) \to L^2(\partial\Omega) \tag{9}$$

is the adjoint of S. Hence, if $a \in L^2(\partial \Omega)$, then there is $\psi \in W^{-1,2}(\partial \Omega)$ such that the pair

$$\begin{aligned} \boldsymbol{u}_s(x) &= \boldsymbol{v}[\boldsymbol{\psi}] + \boldsymbol{\sigma}(x), \\ p_s(x) &= P[\boldsymbol{\psi}](x), \end{aligned} \tag{10}$$

is the unique solution to (2), which vanishes at infinity and takes the value a on $\partial \Omega$ according to (3),[2,3] where

$$\boldsymbol{\sigma}(\boldsymbol{x}) = \frac{1}{\omega} \sum_{i=1}^{m} \frac{(x_i - \boldsymbol{x})}{|\boldsymbol{x} - \boldsymbol{x}_i|^4} \int_{\partial \Omega_i} \boldsymbol{a} \cdot \boldsymbol{n}$$

By classical stability results, the Fredholm property of (8) can be extended in a neighborhood of $(2 - \epsilon, 2 + \epsilon)$, with ϵ depending on $\partial\Omega$. If $\partial\Omega$ is of class C^1 , then (8) is Fredholm for all $q \in (1, +\infty)$. By results of [4], if $a \in L^3(\partial\Omega)$, then the above solution belongs to $L^4(\Omega)$ and

$$\|\boldsymbol{u}_s\|_{L^4(\Omega)} \le \gamma \|\boldsymbol{a}\|_{L^3(\partial\Omega)}.$$
(11)

3. Proof of Theorem 1

Following [5], let $\boldsymbol{a}_{\epsilon} \in W^{1,2}(\partial \Omega)$ be such that

$$\int_{\partial\Omega} |\boldsymbol{a} - \boldsymbol{a}_{\epsilon}|^3 < \epsilon, \tag{12}$$

for small positive ϵ . Let $u_{s\epsilon}$ be the solution to the Stokes problem with boundary value $a - a_{\epsilon}$. For $u \in L^4(\Omega)$, denote by $\mathcal{K}[u]$ the solution to the Stokes problem with boundary value $-\operatorname{tr}_{|\partial\Omega} \mathcal{V}[u]$, where

$$\mathcal{V}[\boldsymbol{u}](\boldsymbol{x}) = \int_{\Omega} \mathcal{U}(\boldsymbol{x} - \boldsymbol{y})(\boldsymbol{u} \cdot \nabla \boldsymbol{u})(\boldsymbol{y}) \mathrm{d} \boldsymbol{v}_{\boldsymbol{y}}.$$

Consider the functional equation

$$\boldsymbol{u}'(\boldsymbol{x}) = \boldsymbol{u}_{s\epsilon} + (\boldsymbol{\mathcal{K}} + \boldsymbol{\mathcal{V}})[\boldsymbol{u}]. \tag{13}$$

By virtue of (11), (12) we see that u' is a contraction in $L^4(\Omega)$. Hence, it follows that (13) has a fixed point u_{ϵ} which is a solution to (1)_{1,2} taking the value $a - a_{\epsilon}$ on $\partial \Omega$ and such that

$$\|\boldsymbol{u}_{\epsilon}\|_{L^{4}(\Omega)} \leq c\epsilon.$$
(14)

Let v_s be the solution to the Stokes problem with boundary value a_{ϵ} :

$$\boldsymbol{v}_{\epsilon} = \boldsymbol{v}[\boldsymbol{\psi}] + \boldsymbol{\sigma}_{\epsilon}, \quad \boldsymbol{\sigma}_{\epsilon}(\boldsymbol{x}) = -\frac{\boldsymbol{x}}{\omega |\boldsymbol{x}|^4} \int_{\partial \Omega} \boldsymbol{a}_{\epsilon} \cdot \boldsymbol{n}.$$
 (15)

Let us look for a solution $\boldsymbol{w} \in W_0^{1,2}(\Omega_R)$ to

$$\nu \Delta \boldsymbol{w} - (\boldsymbol{u}_{\epsilon} + \boldsymbol{v}_{s} + \boldsymbol{w}) \cdot \nabla (\boldsymbol{v}_{s} + \boldsymbol{w}) - (\boldsymbol{w} + \boldsymbol{v}_{s}) \cdot \nabla \boldsymbol{u}_{\epsilon} - \nabla Q = \boldsymbol{0},$$

div $\boldsymbol{w} = 0,$ (16)

in $\Omega_R = \Omega \cap S_R$, for large *R*. To this end, it is sufficient to show that the set of all solutions to (16) are bounded in $W^{1,2}(\Omega)$ (see, e.g. [1]). Following a classical *reductio ad absurdum* argument of J. Leray [6], let us suppose that a sequence of solutions $\boldsymbol{w}_k \in W_0^{1,2}(\Omega)$ to (16) exists such that

$$\lim_{k \to +\infty} J_k = +\infty, \quad J_k = \|\nabla \boldsymbol{w}_k\|_{L^2(\Omega)}.$$
(17)

Setting $\boldsymbol{w}'_k = \boldsymbol{w}_k/J_k$, a straightforward argument shows that \boldsymbol{w}'_k tends strongly in $L^q(\Omega_R)$, q < 4, and weakly in $W^{1,2}(\Omega_R)$, to a field $\boldsymbol{w}' \in W^{1,2}_0(\Omega)$, with $\|\nabla \boldsymbol{w}'\|_{L^2\Omega} \leq 1$, which satisfies the Euler equations

$$\boldsymbol{w}' \cdot \nabla \boldsymbol{w}' + \nabla Q' = \boldsymbol{0} \quad \text{in } \Omega_R \\ \text{div } \boldsymbol{w}' = \boldsymbol{0} \quad \text{in } \Omega_R, \tag{18}$$

for some field $Q' \in W^{1,4/3}(\Omega_R)$ constant on $\partial \Omega$ and ∂S_R (say, Q_0 on $\partial \Omega$ and Q_R on ∂S_R) and

$$\nu = \int_{\Omega} \boldsymbol{w}' \cdot \nabla \boldsymbol{w}' \cdot (\boldsymbol{u}_{\epsilon} + \boldsymbol{v}_{s}).$$
⁽¹⁹⁾

Let us extend w' to Ω by setting w' = 0 in CS_R . Since

$$\begin{split} \left| \int_{\Omega} \boldsymbol{w}' \cdot \nabla \boldsymbol{w}' \cdot (\boldsymbol{u}_{\epsilon} + \boldsymbol{v}_{s}) \right| &\leq \|\boldsymbol{u}_{\epsilon}\|_{L^{4}(\Omega)} \|\boldsymbol{w}'\|_{L^{4}(\Omega)} \|\nabla \boldsymbol{w}'\|_{L^{2}(\Omega)} \leq c\epsilon, \\ \int_{\Omega} \boldsymbol{w}' \cdot \nabla \boldsymbol{w}' \cdot \boldsymbol{v}[\boldsymbol{\psi}] &= -\int_{\partial \Omega_{R}} \nabla Q' \cdot \boldsymbol{v}[\boldsymbol{\psi}] \\ &= -Q_{R} \int_{\partial S_{R}} \boldsymbol{v}[\boldsymbol{\psi}] \cdot \boldsymbol{n} - Q_{0} \int_{\partial \Omega} \boldsymbol{v}[\boldsymbol{\psi}] \cdot \boldsymbol{n} = 0, \end{split}$$

and, taking into account that $\nabla \boldsymbol{w}' \cdot \nabla \boldsymbol{w}'^{\top} | = \hat{\nabla} \boldsymbol{w}' |^2 - \tilde{\nabla} \boldsymbol{w}' |^2$, with $\hat{\nabla} \boldsymbol{w}', \tilde{\nabla} \boldsymbol{w}'$ symmetric and skew parts of $\nabla \boldsymbol{w}'$ respectively and $\|\nabla \boldsymbol{w}'\|_{L^2(\Omega)}^2 = 2\|\tilde{\nabla} \boldsymbol{w}'\|_{L^2(\Omega)}^2 = 2\|\hat{\nabla} \boldsymbol{w}'\|_{L^2(\Omega)}^2$,

$$\begin{split} \left| \int_{\Omega} \boldsymbol{w}' \cdot \nabla \boldsymbol{w}' \cdot \boldsymbol{\sigma}_{\epsilon} \right| &= \left| \int_{\partial \Omega} \boldsymbol{a}_{\epsilon} \cdot \boldsymbol{n} \right| \left| \int_{\Omega} \frac{\nabla \boldsymbol{w}' \cdot \nabla \boldsymbol{w}'^{\top}}{2\omega |\boldsymbol{x}|^{2}} \right|, \\ &\leq \left| \int_{\partial \Omega} \left(\boldsymbol{a}_{\epsilon} - \boldsymbol{a} \right) \cdot \boldsymbol{n} \right| \left| \int_{\Omega} \frac{\nabla \boldsymbol{w}' \cdot \nabla \boldsymbol{w}'^{\top}}{2\omega |\boldsymbol{x}|^{2}} \right| \\ &+ \left| \int_{\partial \Omega} \boldsymbol{a} \cdot \boldsymbol{n} \right| \left| \int_{\Omega} \frac{|\hat{\nabla} \boldsymbol{w}'|^{2} - |\tilde{\nabla} \boldsymbol{w}'|^{2}}{2\omega |\boldsymbol{x}|^{2}} \right| \leq c\epsilon + \mathcal{F} \end{split}$$

from (19) it follows

$$\nu - c\epsilon - \mathcal{F} \le 0. \tag{20}$$

Therefore, since ϵ can be chosen small as we want, we see that the *hypothesis ad absurdum* (17) implies that (4) is not true and this gives the desired uniform estimate. Set $R = k \in \mathbb{N}$ for $k \ge k_0$ and denote by (\boldsymbol{w}_k, Q_k) a solution to (16). By repeating *ad litteram*, the above by contradiction argument (with obvious modification), we see that the sequence $\{\boldsymbol{w}_k\}$ is uniformly bounded in $D^{1,2}(\Omega)^4$ and this is sufficient to conclude that (16) has a solution $\boldsymbol{w} \in D_0^{1,2}(\Omega)$ in Ω .[1,7] Clearly, the field $\boldsymbol{u} = \boldsymbol{u}_{\epsilon} + \boldsymbol{v}_s + \boldsymbol{w}$ gives the desired solution to (1). If $(\boldsymbol{u} + \boldsymbol{w}, p + Q)$ is another solution to (1), with $\boldsymbol{u} + \boldsymbol{w} \in L^4(\Omega)$ and $\boldsymbol{w} \in D_0^{1,2}(\Omega)$, then a simple computation and Schwarz' inequality and Sobolev's inequality yield

$$\nu \int_{\Omega} |\nabla \boldsymbol{w}|^2 = \int_{\Omega} \boldsymbol{w} \cdot \nabla \boldsymbol{w} \cdot \boldsymbol{u} \le \|\boldsymbol{u}\|_{L^4(\Omega)} \|\boldsymbol{w}\|_{L^4(\Omega)} \|\nabla \boldsymbol{w}\|_{L^2(\Omega)}$$
$$\le \frac{3}{4} \|\boldsymbol{u}\|_{L^4(\Omega)} \|\nabla \boldsymbol{w}\|_{L^2(\Omega)}^2.$$

Hence if $3\|\boldsymbol{u}\|_{L^4(\Omega)} < 4\nu$, then $\boldsymbol{w} = \boldsymbol{0}$. Write $\boldsymbol{u} = \boldsymbol{u}_s + \boldsymbol{w}$, where \boldsymbol{u}_s is the solution (10) to the Stokes problem with boundary datum \boldsymbol{a} , and assume $3\|\boldsymbol{u}_s\|_{L^4(\Omega)} < 4\nu$. Therefore, $\boldsymbol{w} \in D_0^{1,2}(\Omega)$ is a solution

to the equations

$$\nu \Delta \boldsymbol{w} - (\boldsymbol{u}_s + \boldsymbol{w}) \cdot \nabla (\boldsymbol{u}_s + \boldsymbol{w}) - \nabla \boldsymbol{p} = \boldsymbol{0} \quad \text{in } \Omega$$

div $\boldsymbol{w} = \boldsymbol{0} \quad \text{in } \Omega$,
 $\boldsymbol{w} = \boldsymbol{0} \quad \text{on } \partial \Omega$,
$$\lim_{x \to \infty} \boldsymbol{w}(x) = \boldsymbol{0}.$$
 (21)

By a standard argument

$$\nu \int_{\Omega} |\nabla \boldsymbol{w}|^2 = \int_{\Omega} \boldsymbol{w} \cdot \nabla \boldsymbol{w} \cdot \boldsymbol{u}_s + \int_{\Omega} \boldsymbol{u}_s \cdot \nabla \boldsymbol{w} \cdot \boldsymbol{u}_s$$

$$\leq \frac{3}{4} \|\boldsymbol{u}\|_{L^4(\Omega)} \|\nabla \boldsymbol{w}\|_{L^2(\Omega)}^2 + \|\boldsymbol{u}_s\|_{L^4(\Omega)}^2 \|\nabla \boldsymbol{w}\|_{L^2(\Omega)}.$$

Hence

$$\frac{4}{3} \left(\nu - \frac{3}{4} \| \boldsymbol{u}_s \|_{L^4(\Omega)} \right) \| \boldsymbol{w} \|_{L^4(\Omega)} \le \left(\nu - \frac{3}{4} \| \boldsymbol{u}_s \|_{L^4(\Omega)} \right) \| \nabla \boldsymbol{w} \|_{L^2(\Omega)} \le \| \boldsymbol{u}_s \|_{L^4(\Omega)}^2.$$
(22)
Minkowski inconstitu

By (22) and Minkowski inequality

$$\|\boldsymbol{u}\|_{L^{4}(\Omega)} \leq \|\boldsymbol{u}_{s}\|_{L^{4}(\Omega)} + \|\boldsymbol{w}\|_{L^{4}(\Omega)} \leq \|\boldsymbol{u}_{s}\|_{L^{4}(\Omega)} + \frac{\|\boldsymbol{u}_{s}\|_{L^{4}(\Omega)}^{2}}{\frac{4}{3}\left(\nu - \frac{3}{4}\|\boldsymbol{u}_{s}\|_{L^{4}(\Omega)}\right)}.$$

Hence it follows that (5) yields uniqueness in $L^4(\Omega)$. Note that by (11), (5) is implied by $\gamma || \boldsymbol{a} ||_{L^3(\partial \Omega)} < 4\nu/3$ and

$$\gamma \|\boldsymbol{a}\|_{L^{3}(\partial\Omega)} + \frac{\gamma^{2} \|\boldsymbol{a}\|_{L^{3}(\Omega)}^{2}}{\frac{4}{3} \left(\nu - \frac{3\gamma}{4} \|\boldsymbol{a}\|_{L^{3}(\partial\Omega)} \right)} < \frac{4\nu}{3}.$$

Remark 1: It is clear that the proof of existence of a solution to (1) in $L^4(\Omega)$ requires only that the corresponding Stokes problem has a solution $u_s \in L^4(\Omega)$. Hence, it follows that if $\partial \Omega$ is of class $C^{1,1}$, then Theorem 1 can be extended to boundary data $a \in W^{-1/4,4}(\partial \Omega)$.[3]

4. Some remarks in higher dimensions

If Ω is an exterior domain of \mathbb{R}^m (m > 3) of class C^1 , then for $a \in L^{m-1}(\partial \Omega)$ the Stokes problem

$$\nu \Delta \boldsymbol{u} - \nabla \boldsymbol{p} = \boldsymbol{0} \quad \text{in } \Omega \\
\text{div } \boldsymbol{u} = 0 \quad \text{in } \Omega, \\
\boldsymbol{u} = \boldsymbol{a} \quad \text{on } \partial \Omega, \\
\lim_{x \to \infty} \boldsymbol{u}(x) = \boldsymbol{0},$$
(23)

has a solution $\boldsymbol{u}_s \in L^m(\Omega)$ and $\|\boldsymbol{u}_s\|_{L^m(\Omega)} \leq \gamma \|\boldsymbol{a}\|_{L^{m-1}(\partial\Omega)}$ (see [3]). For $\boldsymbol{u} \in L^m(\Omega)$ consider the functional equation

$$\boldsymbol{u}'(\boldsymbol{x}) = \boldsymbol{u}_{\boldsymbol{s}} + (\boldsymbol{\mathcal{K}} + \boldsymbol{\mathcal{V}})[\boldsymbol{u}]$$
(24)

in $L^m(\Omega)$, where the operator $\mathcal{K} + \mathcal{V}$ is defined in the proof of Theorem 1. Taking into account that

$$\|(\mathcal{K}+\mathcal{V})[\boldsymbol{u}]\|_{L^{m}(\Omega)} \leq c \|\boldsymbol{u}\|_{L^{m}(\Omega)}^{2},$$

If $\|\boldsymbol{a}\|_{L^{m-1}(\partial\Omega)}$ is sufficiently small, then \boldsymbol{u}' is a contraction in a ball of $L^m(\Omega)$ and the fixed point of (24) is a C^∞ solution to (1). Moreover, if $\boldsymbol{u} + \boldsymbol{w} \in L^m(\Omega)$ is another solution to (1), then by Schwarz's inequality and Sobolev's inequality

$$\nu \int_{\Omega} |\nabla \boldsymbol{w}|^2 = \int_{\Omega} \boldsymbol{w} \cdot \nabla \boldsymbol{w} \cdot \boldsymbol{u} \leq \frac{(m-1)}{(m-2)\sqrt{m}} \|\boldsymbol{u}\|_{L^m(\Omega)} \|\nabla \boldsymbol{w}\|_{L^m(\Omega)}^2.$$

Hence, it follows that the above solution is unique in the ball

$$\|\boldsymbol{u}\|_{L^m(\Omega)} < \frac{\nu\sqrt{m}(m-2)}{m-1}$$

It is clear that for domains of class C^1 we can repeat the argument in the proof of Theorem 1 to see that for $\boldsymbol{a} \in L^{m-1}(\Omega)$ and fluxes obeying a condition of the type (4), then the Equations (1) have a solution $\boldsymbol{u} = \boldsymbol{u}_{\epsilon} + \boldsymbol{v}_s + \boldsymbol{w}$, with $\boldsymbol{u}_{\epsilon}$, \boldsymbol{v}_s regular in Ω and $\boldsymbol{w} \in D_0^{1,2}(\Omega)$. Up to date, we have not general results assuring that \boldsymbol{w} is regular.

Notes

- 1. For the main notation, we follow the monograph.[1]
- 2. See [3] and Section 2.
- 3. In such a case, (7) has to be understood as the value of the functional ψ at \mathfrak{U} .
- 4. $D^{1,2}(\Omega) = \{ \varphi \in L^1_{\text{loc}}(\Omega) : \|\nabla \varphi\|_{L^2(\Omega)} < +\infty \}$ and $D^{1,2}_0(\Omega)$ is the completion of $C^{\infty}_0(\Omega)$ with respect to $\|\nabla \varphi\|_{L^2(\Omega)}$.

Disclosure statement

No potential conflict of interest was reported by the author.

References

- Galdi GP. An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems. New York: Springer; 2011.
- [2] Mitrea M, Taylor M. Navier-Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 2001;321:955–987.
- [3] Russo R. On Stokes' problem. In: Rannacher R, Sequeira A, editors. Advances in mathematica fluid mechanics. Berlin: Springer-Verlag; 2010. p. 473–511.
- [4] Shen Z. A note on the Dirichlet problem for the Stokes system in Lipschitz domains. Proc Amer Math Soc. 1995;123:801–811.
- [5] Marušić-Paloka E. Solvability of the Navier–Stokes system with L^2 boundary data. Appl Math Optim. 2000;41:365–375.
- [6] Leray J. Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l'hydrodynamique [Study of different nonlinear integral equations and of some problems related to hydrodynamics]. J Math Pures Appl. 1933;12:1–82.
- [7] Temam R. Navier–Stokes equations. Amsterdam: North-Holland; 1977.