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ABSTRACT
We prove that the steady state Navier–Stokes equations have a solution
in an exterior Lipschitz domain of R

4, vanishing at infinity, provided the
boundary datum belongs to L3(∂�).
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1. Introduction

In this paper, we shall consider the steady–state boundary–value problem for the Navier–Stokes
equations1

ν�u − u · ∇u − ∇p = 0 in �,
div u = 0 in �,

u = a on ∂�

lim
r→+∞ u(x) = 0 on ∂�

(1)

in the four-dimensional exterior domain

� = R
4 \

m⋃
i=1

�i

where �i are bounded Lipschitz domains with connected boundaries such that �i ∪ �j = ∅, i �= j.
In (1), u and p are the kinetic and pressure fields respectively, ν > 0 is the kinematical viscosity
coefficient and a is an assigned field on ∂�.

Strictly connected to (1) is its linearized version, the Stokes equations

ν�u − ∇p = 0 in �,
div u = 0 in �,

u = a on ∂�

lim
r→+∞ u(x) = 0 on ∂�.

(2)
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2 V. COSCIA

It is well known that if a ∈ L3(∂�), then (2) has a solution2(us, ps) analytical in �, such that
us = O(r−2), ps = O(r−3) and which satisfies (2)3 in the sense of the non tangential convergence,
i.e, there is a finite cone � such that

lim
x(∈�ξ )→ξ

u(x) = a(ξ) (3)

for almost all ξ ∈ ∂�, where �ξ ⊂ � is a cone with vertex at ξ , congruent to �.
In Section 3, we prove the following

Theorem 1: If a ∈ L3(∂�) and

F = 1
4ω

m∑
i=1

∣∣∣∣
∫

∂�i

a · n

∣∣∣∣max
∂�

1
|x − xi|2 < ν, (4)

where ω is the measure of the surface of the unit ball of R
4, xi fixed point of �i , and n is the outward

(with respect to �) unit normal to ∂�, then (1) has a solution (u, p) ∈ [L4(�) ∩ C∞(�)] × C∞(�).
Moreover, u is unique in L4(�), provided 3‖us‖L4(�) < 4ν and

‖us‖L4(�) +
‖us‖2L4(�)

4
3
(
ν − 3

4‖us‖L4(�)

) <
4ν
3
, (5)

where us is the solution to (2) in � with boundary datum a.
In the next section, we collect the main preliminary tools we shall need to get our results. For

domains of class C1,1 and boundary data in W1/4,4(∂�) problem (2) in bounded domains has been
considered by several authors (see p.297 of [1] and the references therein).

2. Preliminary results

The fundamental solution to (2) writes

Uij(x − y) = − 1
4ων|x − y|2

{
δij + 2(xi − yi)(xj − yj)

|x − y|2
}
,


i(x − y) = xi − yi
ω|x − y|4 .

(6)

The Stokes simple layer potential with density ψ ∈ Lq(∂�) is defined by

v[ψ](x) =
∫

∂�

U(x − ξ) · ψ(ξ)daξ ,

P[ψ](x) =
∫

∂�

� (x − ξ) · ψ(ξ)daξ ,
(7)

and is a solution to Stokes’ Equations (2)1,2 in R
4 \ ∂�. The trace of (7)1 on ∂� is a continuous

operator

S : Lq(∂�) → W1,q(∂�). (8)

For q = 2, S is Fredholm with index zero and KernS = KernS ′ = {n},[2,3] where3

S ′ : W−1,2(∂�) → L2(∂�) (9)
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is the adjoint of S . Hence, if a ∈ L2(∂�), then there is ψ ∈ W−1,2(∂�) such that the pair

us(x) = v[ψ] + σ (x),
ps(x) = P[ψ](x), (10)

is the unique solution to (2), which vanishes at infinity and takes the value a on ∂� according
to (3),[2,3] where

σ (x) = 1
ω

m∑
i=1

(xi − x)
|x − xi|4

∫
∂�i

a · n .

By classical stability results, the Fredholm property of (8) can be extended in a neighborhood of
(2− ε, 2+ ε), with ε depending on ∂�. If ∂� is of class C1, then (8) is Fredholm for all q ∈ (1,+∞).
By results of [4], if a ∈ L3(∂�), then the above solution belongs to L4(�) and

‖us‖L4(�) ≤ γ ‖a‖L3(∂�). (11)

3. Proof of Theorem 1

Following [5], let aε ∈ W1,2(∂�) be such that
∫

∂�

|a − aε |3 < ε, (12)

for small positive ε. Let usε be the solution to the Stokes problem with boundary value a − aε . For
u ∈ L4(�), denote by K[u] the solution to the Stokes problem with boundary value −tr |∂�V[u],
where

V[u](x) =
∫

�

U(x − y)(u · ∇u)(y)dvy.

Consider the functional equation

u′(x) = usε + (K + V)[u]. (13)

By virtue of (11), (12) we see that u′ is a contraction in L4(�). Hence, it follows that (13) has a fixed
point uε which is a solution to (1)1,2 taking the value a − aε on ∂� and such that

‖uε‖L4(�) ≤ cε. (14)

Let vs be the solution to the Stokes problem with boundary value aε :

vε = v[ψ] + σ ε , σ ε(x) = − x
ω|x|4

∫
∂�

aε · n. (15)

Let us look for a solution w ∈ W1,2
0 (�R) to

ν�w − (uε + vs + w) · ∇(vs + w) − (w + vs) · ∇uε − ∇Q = 0,
divw = 0, (16)

in �R = � ∩ SR, for large R. To this end, it is sufficient to show that the set of all solutions to (16)
are bounded in W1,2(�) (see, e.g. [1]). Following a classical reductio ad absurdum argument of
J. Leray [6], let us suppose that a sequence of solutions wk ∈ W1,2

0 (�) to (16) exists such that

lim
k→+∞

Jk = +∞, Jk = ‖∇wk‖L2(�). (17)
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Setting w′
k = wk/Jk, a straightforward argument shows that w′

k tends strongly in Lq(�R), q < 4,
and weakly in W1,2(�R), to a field w′ ∈ W1,2

0 (�), with ‖∇w′‖L2�) ≤ 1, which satisfies the Euler
equations

w′ · ∇w′ + ∇Q′ = 0 in �R
divw′ = 0 in �R,

(18)

for some field Q′ ∈ W1,4/3(�R) constant on ∂� and ∂SR (say, Q0 on ∂� and QR on ∂SR) and

ν =
∫

�

w′ · ∇w′ · (uε + vs). (19)

Let us extend w′ to � by setting w′ = 0 in �SR. Since
∣∣∣∣
∫

�

w′ · ∇w′ · (uε + vs)

∣∣∣∣ ≤ ‖uε‖L4(�)‖w′‖L4(�)‖∇w′‖L2(�) ≤ cε,
∫

�

w′ · ∇w′ · v[ψ] = −
∫

∂�R

∇Q′ · v[ψ]

= −QR

∫
∂SR

v[ψ] · n − Q0

∫
∂�

v[ψ] · n = 0,

and, taking into account that ∇w′ · ∇w′| = ∇̂w′|2 − ∇̃w′|2, with ∇̂w′, ∇̃w′ symmetric and skew
parts of ∇w′ respectively and ‖∇w′‖2L2(�)

= 2‖∇̃w′‖2L2(�)
= 2‖∇̂w′‖2L2(�)

,

∣∣∣∣
∫

�

w′ · ∇w′ · σ ε

∣∣∣∣ =
∣∣∣∣
∫

∂�

aε · n

∣∣∣∣
∣∣∣∣
∫

�

∇w′ · ∇w′

2ω|x|2
∣∣∣∣ ,

≤
∣∣∣∣
∫

∂�

(aε − a) · n

∣∣∣∣
∣∣∣∣
∫

�

∇w′ · ∇w′

2ω|x|2
∣∣∣∣

+
∣∣∣∣
∫

∂�

a · n

∣∣∣∣
∣∣∣∣∣
∫

�

|∇̂w′|2 − |∇̃w′|2
2ω|x|2

∣∣∣∣∣ ≤ cε + F

from (19) it follows

ν − cε − F ≤ 0. (20)

Therefore, since ε can be chosen small as wewant, we see that the hypothesis ad absurdum (17) implies
that (4) is not true and this gives the desired uniform estimate. Set R = k ∈ N for k ≥ k0 and denote
by (wk,Qk) a solution to (16). By repeating ad litteram, the above by contradiction argument (with
obvious modification), we see that the sequence {wk} is uniformly bounded in D1,2(�)4 and this is
sufficient to conclude that (16) has a solutionw ∈ D1,2

0 (�) in�.[1,7] Clearly, the field u = uε+vs+w
gives the desired solution to (1). If (u +w, p+Q) is another solution to (1), with u +w ∈ L4(�) and
w ∈ D1,2

0 (�), then a simple computation and Schwarz’ inequality and Sobolev’s inequality yield

ν

∫
�

|∇w|2 =
∫

�

w · ∇w · u ≤ ‖u‖L4(�)‖w‖L4(�)‖∇w‖L2(�)

≤ 3
4‖u‖L4(�)‖∇w‖2L2(�)

.

Hence if 3‖u‖L4(�) < 4ν, then w = 0. Write u = us + w, where us is the solution (10) to the Stokes
problem with boundary datum a, and assume 3‖us‖L4(�) < 4ν. Therefore,w ∈ D1,2

0 (�) is a solution
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to the equations
ν�w − (us + w) · ∇(us + w) − ∇p = 0 in �

divw = 0 in �,
w = 0 on ∂�,

lim
x→∞w(x) = 0.

(21)

By a standard argument

ν

∫
�

|∇w|2 =
∫

�

w · ∇w · us +
∫

�

us · ∇w · us

≤ 3
4‖u‖L4(�)‖∇w‖2L2(�)

+ ‖us‖2L4(�)
‖∇w‖L2(�).

Hence
4
3
(
ν − 3

4‖us‖L4(�)

)‖w‖L4(�) ≤ (
ν − 3

4‖us‖L4(�)

)‖∇w‖L2(�) ≤ ‖us‖2L4(�)
. (22)

By (22) and Minkowski inequality

‖u‖L4(�) ≤ ‖us‖L4(�) + ‖w‖L4(�) ≤ ‖us‖L4(�) +
‖us‖2L4(�)

4
3
(
ν − 3

4‖us‖L4(�)

) .

Hence it follows that (5) yields uniqueness in L4(�). Note that by (11), (5) is implied by γ ‖a‖L3(∂�) <
4ν/3 and

γ ‖a‖L3(∂�) +
γ 2‖a‖2L3(�)

4
3
(
ν − 3γ

4 ‖a‖L3(∂�)

) <
4ν
3

.

�
Remark 1: It is clear that the proof of existence of a solution to (1) in L4(�) requires only that the
corresponding Stokes problem has a solution us ∈ L4(�). Hence, it follows that if ∂� is of class C1,1,
then Theorem 1 can be extended to boundary data a ∈ W−1/4,4(∂�).[3]

4. Some remarks in higher dimensions

If � is an exterior domain of R
m (m > 3) of class C1, then for a ∈ Lm−1(∂�) the Stokes problem

ν�u − ∇p = 0 in �

div u = 0 in �,
u = a on ∂�,

lim
x→∞ u(x) = 0,

(23)

has a solution us ∈ Lm(�) and ‖us‖Lm(�) ≤ γ ‖a‖Lm−1(∂�) (see [3]). For u ∈ Lm(�) consider the
functional equation

u′(x) = us + (K + V)[u] (24)

in Lm(�), where the operator K + V is defined in the proof of Theorem 1. Taking into account that

‖(K + V)[u]‖Lm(�) ≤ c‖u‖2Lm(�),

If ‖a‖Lm−1(∂�) is sufficiently small, then u′ is a contraction in a ball of Lm(�) and the fixed point of
(24) is aC∞ solution to (1). Moreover, if u+w ∈ Lm(�) is another solution to (1), then by Schwarz’s
inequality and Sobolev’s inequality

ν

∫
�

|∇w|2 =
∫

�

w · ∇w · u ≤ (m−1)
(m−2)

√
m‖u‖Lm(�)‖∇w‖2Lm(�).
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Hence, it follows that the above solution is unique in the ball

‖u‖Lm(�) <
ν
√
m(m − 2)
m − 1

.

It is clear that for domains of class C1 we can repeat the argument in the proof of Theorem 1 to
see that for a ∈ Lm−1(�) and fluxes obeying a condition of the type (4), then the Equations (1) have
a solution u = uε + vs + w, with uε , vs regular in � and w ∈ D1,2

0 (�). Up to date, we have not
general results assuring that w is regular.

Notes

1. For the main notation, we follow the monograph.[1]
2. See [3] and Section 2.
3. In such a case, (7) has to be understood as the value of the functional ψ at U.
4. D1,2(�) = {ϕ ∈ L1loc(�): ‖∇ϕ‖L2(�) < +∞} and D1,2

0 (�) is the completion of C∞
0 (�) with respect to

‖∇ϕ‖L2(�).
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[5] Marušić-Paloka E. Solvability of the Navier–Stokes system with L2 boundary data. Appl Math Optim.
2000;41:365–375.

[6] Leray J. Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l’hydrodynamique
[Study of different nonlinear integral equations and of some problems related to hydrodynamics]. J Math Pures
Appl. 1933;12:1–82.

[7] Temam R. Navier–Stokes equations. Amsterdam: North-Holland; 1977.


	1. Introduction
	2. Preliminary results
	3. Proof of Theorem 1
	4. Some remarks in higher dimensions
	Notes
	Disclosure statement
	References



