By virtue of Γ-convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p-Laplacian operator, in the singular limit as the nonlocal operator converges to the p-Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm.
Stability of variational eigenvalues for the fractional p-Laplacian
BRASCO, Lorenzo;
2016
Abstract
By virtue of Γ-convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p-Laplacian operator, in the singular limit as the nonlocal operator converges to the p-Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
braparsqu_rev.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
497.4 kB
Formato
Adobe PDF
|
497.4 kB | Adobe PDF | Visualizza/Apri |
braparsqu_DCDS.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
618.87 kB
Formato
Adobe PDF
|
618.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.