Aims We aimed to establish a 3D osteoblasts/osteoclasts co-culture system requiring limited amounts of human primary cells and useful as platform to 1. recapitulate an "oral bone microenvironment" in healthy or pathological condition, and 2. produce potential implantable cell constructs for regeneration of jawbone which can be negatively affected by bisphosphonates (BPs). Main methods Osteoblasts from normal bone chips (hOBs) or from jawbone of patients taking BPs (hnOBs) were co-cultured with monocytes (hMCs) either in static (3D-C) or dynamic (3D-DyC) condition using the RCCS-4™ bioreactor for 3 weeks. Cell aggregates were characterized for viability, histological features and specific osteoclastic and osteogenic markers. Key findings In all tested conditions hOBs supported the formation of mature osteoclasts (hOCs), without differentiating agents or exogenous scaffolds. 3D-DyC condition associated with a ground based condition (Xg) rather than modeled microgravity (μXg) produced aggregates with high level of osteogenic markers including Osteopontin (OPN), Osterix (OSX), Runx2 and appreciable bone mineral matrix. hnOBs co-cultured with hMCs in 3D-Dyc/Xg condition generated OPN and mineral matrix positive aggregates. Significance We optimized a 3D co-culture system with a limited amount of cells preserving viability and functionality of bone cellular components and generating bone-like aggregates also by using cells from jawbone necrotic tissue. The feasibility to obtain from poor-quality bone sites viable osteoblasts able to form aggregates when co-cultured with hMCs, allows to study the development of autologous implantable constructs to overcome jawbone deficiency in patients affected by MRONJ (Medication-Related Osteonecrosis of the Jaws).

Establishment of a 3D-dynamic osteoblasts-osteoclasts co-culture model to simulate the jawbone microenvironment in vitro

PENOLAZZI, Maria Letizia
Primo
;
LOLLI, Andrea
Secondo
;
ANGELOZZI, MARCO;LAMBERTINI, Elisabetta;TROMBELLI, Leonardo;CIARPELLA, Francesca;VECCHIATINI, Renata
Penultimo
;
PIVA, Maria Roberta
Ultimo
2016

Abstract

Aims We aimed to establish a 3D osteoblasts/osteoclasts co-culture system requiring limited amounts of human primary cells and useful as platform to 1. recapitulate an "oral bone microenvironment" in healthy or pathological condition, and 2. produce potential implantable cell constructs for regeneration of jawbone which can be negatively affected by bisphosphonates (BPs). Main methods Osteoblasts from normal bone chips (hOBs) or from jawbone of patients taking BPs (hnOBs) were co-cultured with monocytes (hMCs) either in static (3D-C) or dynamic (3D-DyC) condition using the RCCS-4™ bioreactor for 3 weeks. Cell aggregates were characterized for viability, histological features and specific osteoclastic and osteogenic markers. Key findings In all tested conditions hOBs supported the formation of mature osteoclasts (hOCs), without differentiating agents or exogenous scaffolds. 3D-DyC condition associated with a ground based condition (Xg) rather than modeled microgravity (μXg) produced aggregates with high level of osteogenic markers including Osteopontin (OPN), Osterix (OSX), Runx2 and appreciable bone mineral matrix. hnOBs co-cultured with hMCs in 3D-Dyc/Xg condition generated OPN and mineral matrix positive aggregates. Significance We optimized a 3D co-culture system with a limited amount of cells preserving viability and functionality of bone cellular components and generating bone-like aggregates also by using cells from jawbone necrotic tissue. The feasibility to obtain from poor-quality bone sites viable osteoblasts able to form aggregates when co-cultured with hMCs, allows to study the development of autologous implantable constructs to overcome jawbone deficiency in patients affected by MRONJ (Medication-Related Osteonecrosis of the Jaws).
2016
Penolazzi, Maria Letizia; Lolli, Andrea; Sardelli, Luca; Angelozzi, Marco; Lambertini, Elisabetta; Trombelli, Leonardo; Ciarpella, Francesca; Vecchiat...espandi
File in questo prodotto:
File Dimensione Formato  
LS.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Penolazzi 11392_2353764.pdf

accesso aperto

Descrizione: Post print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2353764
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact