In this paper monoidal Hom-Lie algebras, Lie color algebras, Lie superalgebras and other type of generalized Lie algebras are recovered by means of an iterated construction, known as monadic decomposition of functors, which is based on Eilenberg–Moore categories. To this aim we introduce the notion of Milnor–Moore category as a monoidal category for which a Milnor–Moore type Theorem holds. We also show how to lift the property of being a Milnor–Moore category whenever a suitable monoidal functor is given and we apply this technique to provide examples.
Milnor-Moore categories and monadic decomposition
MENINI, ClaudiaUltimo
2016
Abstract
In this paper monoidal Hom-Lie algebras, Lie color algebras, Lie superalgebras and other type of generalized Lie algebras are recovered by means of an iterated construction, known as monadic decomposition of functors, which is based on Eilenberg–Moore categories. To this aim we introduce the notion of Milnor–Moore category as a monoidal category for which a Milnor–Moore type Theorem holds. We also show how to lift the property of being a Milnor–Moore category whenever a suitable monoidal functor is given and we apply this technique to provide examples.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
35-MilnorMooreCat&MndcDecmp.pdf
accesso aperto
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.