A novel approach to produce artificial bone composites (microfibers) with distinctive features mimicking natural tissue was investigated. Currently proposed inorganic materials (e.g. apatite matrixes) lack self-assembly and thereby limit interactions between cells and the material. The present work investigates the feasibility of creating "bio-inspired materials" specifically designed to overcome certain limitations inherent to current biomaterials. We examined the dimensions, morphology, and constitutive features of a composite hydrogel which combined an alginate based microfiber with a gelatin solution or a particulate form of urinary bladder matrix (UBM). The effectiveness of the composite microfibers to induce and modulate osteoblastic differentiation in three-dimensional (3D) scaffolds without altering the viability and morphological characteristics of the cells was investigated. The present study describes a novel alginate microfiber production method with the use of microfluidics. The microfluidic procedure allowed for precise tuning of microfibers which resulted in enhanced viability and function of embedded cells.

Composite ECM-alginate microfibers produced by microfluidics as scaffolds with biomineralization potential.

ANGELOZZI, MARCO;PENOLAZZI, Maria Letizia;MAZZITELLI, Stefania;PIVA, Maria Roberta;NASTRUZZI, Claudio
2015

Abstract

A novel approach to produce artificial bone composites (microfibers) with distinctive features mimicking natural tissue was investigated. Currently proposed inorganic materials (e.g. apatite matrixes) lack self-assembly and thereby limit interactions between cells and the material. The present work investigates the feasibility of creating "bio-inspired materials" specifically designed to overcome certain limitations inherent to current biomaterials. We examined the dimensions, morphology, and constitutive features of a composite hydrogel which combined an alginate based microfiber with a gelatin solution or a particulate form of urinary bladder matrix (UBM). The effectiveness of the composite microfibers to induce and modulate osteoblastic differentiation in three-dimensional (3D) scaffolds without altering the viability and morphological characteristics of the cells was investigated. The present study describes a novel alginate microfiber production method with the use of microfluidics. The microfluidic procedure allowed for precise tuning of microfibers which resulted in enhanced viability and function of embedded cells.
2015
Angelozzi, Marco; Miotto, M; Penolazzi, Maria Letizia; Mazzitelli, Stefania; Keane, T; Badylak, Sf; Piva, Maria Roberta; Nastruzzi, Claudio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2334084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact