Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD.

History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents

PRETI, Delia
Primo
;
BARALDI, Pier Giovanni
;
BOREA, Pier Andrea;VARANI, Katia
Ultimo
2015

Abstract

Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD.
2015
Preti, Delia; Baraldi, Pier Giovanni; Moorman, Allan R; Borea, Pier Andrea; Varani, Katia
File in questo prodotto:
File Dimensione Formato  
Preti_et_al-2015-Medicinal_Research_Reviews.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
VARANI 11392-2329483-postprint.pdf

accesso aperto

Descrizione: post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2329483
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 80
social impact