The 2-amino-3-(p-chlorobenzoyl)thiophene scaffold has been widely employed as a pharmacophore for the identification of small molecules acting as allosteric modulators at the adenosine A1 receptor. A new series of 2-amino-3-(p-chlorobenzoyl)-4-benzyl-5-arylthiophene derivatives, characterized by the absence as well as the presence of electron-releasing or electron-withdrawing groups on the phenyl ring at the 4- and 5-positions of the thiophene ring, were identified as positive allosteric enhancers at the adenosine A1 receptor in binding (saturation, competition and dissociation kinetics) and functional assays. To better understand the positional requirements of substituents on the 2-amino-3-(p-chlorobenzoyl)thiophene core, the corresponding regioisomeric 4-aryl-5-benzylthiophene analogues were synthesized and found to possess reduced allosteric enhancer activity.
Synthesis and biological evaluation of a new series of 2-amino-3-aroyl thiophene derivatives as agonist allosteric modulators of the A1 adenosine receptor. A position-dependent effect study
ROMAGNOLI, Romeo
Primo
;BARALDI, Pier GiovanniSecondo
;VINCENZI, Fabrizio;BOREA, Pier AndreaPenultimo
;VARANI, KatiaUltimo
2015
Abstract
The 2-amino-3-(p-chlorobenzoyl)thiophene scaffold has been widely employed as a pharmacophore for the identification of small molecules acting as allosteric modulators at the adenosine A1 receptor. A new series of 2-amino-3-(p-chlorobenzoyl)-4-benzyl-5-arylthiophene derivatives, characterized by the absence as well as the presence of electron-releasing or electron-withdrawing groups on the phenyl ring at the 4- and 5-positions of the thiophene ring, were identified as positive allosteric enhancers at the adenosine A1 receptor in binding (saturation, competition and dissociation kinetics) and functional assays. To better understand the positional requirements of substituents on the 2-amino-3-(p-chlorobenzoyl)thiophene core, the corresponding regioisomeric 4-aryl-5-benzylthiophene analogues were synthesized and found to possess reduced allosteric enhancer activity.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0223523415301173-main.pdf
solo gestori archivio
Descrizione: Full text ed
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
11392_2327120_postprint_Romeo _Romagnoli.pdf
accesso aperto
Descrizione: Post print
Tipologia:
Post-print
Licenza:
Creative commons
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.