This study addresses the problem of efficient fault simulation and test generation in circuits using multi-output combinational logic cells. A symbolic fault simulation algorithm is proposed to exploit bit-level parallelism in order to represent the propagation of the output value of faulty cells throughout the circuit, thus accounting for different faulty behaviours in a single simulation step. A satisfiability (SAT)-based test generation procedure is also provided and it early discovers sets of undetectable behaviours. Results for a set of combinational benchmarks show the feasibility of the proposed approach.
Efficient testing of multi-output combinational cells in nano-complementary metal oxide semiconductor integrated circuits
FAVALLI, Michele;
2014
Abstract
This study addresses the problem of efficient fault simulation and test generation in circuits using multi-output combinational logic cells. A symbolic fault simulation algorithm is proposed to exploit bit-level parallelism in order to represent the propagation of the output value of faulty cells throughout the circuit, thus accounting for different faulty behaviours in a single simulation step. A satisfiability (SAT)-based test generation procedure is also provided and it early discovers sets of undetectable behaviours. Results for a set of combinational benchmarks show the feasibility of the proposed approach.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.