We describe the implementation of a thermal compressible Lattice Boltzmann algorithm on an NVIDIA Tesla C2050 system based on the Fermi GP-GPU. We consider two different versions, including and not including reactive effects. We describe the overall organization of the algorithm and give details on its implementations. Efficiency ranges from 25% to 31% of the double precision peak performance of the GP-GPU. We compare our results with a different implementation of the same algorithm, developed and optimized for many-core Intel Westmere CPUs.

An Optimized D2Q37 Lattice Boltzmann code on GP-GPUs

MANTOVANI, Filippo;PIVANTI, Marcello;SCHIFANO, Sebastiano Fabio;TRIPICCIONE, Raffaele
2013

Abstract

We describe the implementation of a thermal compressible Lattice Boltzmann algorithm on an NVIDIA Tesla C2050 system based on the Fermi GP-GPU. We consider two different versions, including and not including reactive effects. We describe the overall organization of the algorithm and give details on its implementations. Efficiency ranges from 25% to 31% of the double precision peak performance of the GP-GPU. We compare our results with a different implementation of the same algorithm, developed and optimized for many-core Intel Westmere CPUs.
2013
L., Biferale; Mantovani, Filippo; Pivanti, Marcello; F., Pozzati; M., Sbragaglia; A., Scagliarini; Schifano, Sebastiano Fabio; F., Toschi; Tripiccione...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1520339
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 19
social impact