The present commentary surveys the methods for obtaining the thermodynamic parameters of the drug-receptor binding equilibrium, DeltaG degrees, DeltaH degrees, DeltaS degrees, and DeltaC degrees (p) (standard free energy, enthalpy, entropy, and heat capacity, respectively). Moreover, it reviews the available thermodynamic data for the binding of agonists and antagonists to several G-protein coupled receptors (GPCRs) and ligand-gated ion channel receptors (LGICRs). In particular, thermodynamic data for five GPCRs (beta-adrenergic, adenosine A(1), adenosine A(2A), dopamine D(2), and 5-HT(1A)) and four LGICRs (glycine, GABA(A), 5-HT(3), and nicotinic) have been collected and analyzed. Among these receptor systems, seven (three GPCRs and all LGICRs) show "thermodynamic agonist-antagonist discrimination": when the agonist binding to a given receptor is entropy-driven, the binding of its antagonist is enthalpy-driven, or vice versa. A scatter plot of all entropy versus enthalpy values of the database gives a regression line with the equation TDeltaS degrees (kJ mol(-1); T = 298.15 K) = 40.3 (+/- 0.7) + 1.00 (+/-0.01) DeltaH degrees (kJ mol(-1)); N = 184; r = 0.981; P < 0.0001 - which is of the form DeltaH degrees = beta. DeltaS degrees, revealing the presence of the "enthalpy-entropy compensation" phenomenon. This means that any decrease of binding enthalpy is compensated for by a parallel decrease of binding entropy, and vice versa, in such a manner that affinity constant values (K(A)) of drug-receptor equilibrium (DeltaG degrees = -RT ln K(A) = DeltaH degrees - TDeltaS degrees ) cannot be greater than 10(11) M(-1). According to the most recent hypotheses concerning drug-receptor interaction mechanisms, these thermodynamic phenomena appear to be a consequence of the rearrangement of solvent molecules that occurs during the binding.

Can Thermodynamic Measurements of Receptor Binding Yield Information on Drug Affinity and Efficacy?

BOREA, Pier Andrea;DALPIAZ, Alessandro;VARANI, Katia;GILLI, Gastone;GILLI, Paola
2000

Abstract

The present commentary surveys the methods for obtaining the thermodynamic parameters of the drug-receptor binding equilibrium, DeltaG degrees, DeltaH degrees, DeltaS degrees, and DeltaC degrees (p) (standard free energy, enthalpy, entropy, and heat capacity, respectively). Moreover, it reviews the available thermodynamic data for the binding of agonists and antagonists to several G-protein coupled receptors (GPCRs) and ligand-gated ion channel receptors (LGICRs). In particular, thermodynamic data for five GPCRs (beta-adrenergic, adenosine A(1), adenosine A(2A), dopamine D(2), and 5-HT(1A)) and four LGICRs (glycine, GABA(A), 5-HT(3), and nicotinic) have been collected and analyzed. Among these receptor systems, seven (three GPCRs and all LGICRs) show "thermodynamic agonist-antagonist discrimination": when the agonist binding to a given receptor is entropy-driven, the binding of its antagonist is enthalpy-driven, or vice versa. A scatter plot of all entropy versus enthalpy values of the database gives a regression line with the equation TDeltaS degrees (kJ mol(-1); T = 298.15 K) = 40.3 (+/- 0.7) + 1.00 (+/-0.01) DeltaH degrees (kJ mol(-1)); N = 184; r = 0.981; P < 0.0001 - which is of the form DeltaH degrees = beta. DeltaS degrees, revealing the presence of the "enthalpy-entropy compensation" phenomenon. This means that any decrease of binding enthalpy is compensated for by a parallel decrease of binding entropy, and vice versa, in such a manner that affinity constant values (K(A)) of drug-receptor equilibrium (DeltaG degrees = -RT ln K(A) = DeltaH degrees - TDeltaS degrees ) cannot be greater than 10(11) M(-1). According to the most recent hypotheses concerning drug-receptor interaction mechanisms, these thermodynamic phenomena appear to be a consequence of the rearrangement of solvent molecules that occurs during the binding.
2000
Borea, Pier Andrea; Dalpiaz, Alessandro; Varani, Katia; Gilli, Gastone; Gilli, Paola
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1203213
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 69
social impact