Lipid microparticles loaded with the flavonoid, quercetin were developed in order to enhance its stability in topical formulations. The microparticles were produced using tristearin as the lipid material and phosphatidylcholine as the emulsifier. The obtained lipoparticles were characterized by release studies, scanning electron microscopy and powder X-ray diffractometry. The quercetin loading was 12.1% (w/w). Free or microencapsulated quercetin was introduced in a model cream formulation (oil-in-water emulsion) and irradiated with a solar simulator. The extent of photodegradation was measured by high-performance liquid chromatography. The light-induced decomposition of quercetin in the cream vehicle was markedly decreased by incorporation into the lipid microparticles (the extent of degradation was 23.1 ± 3.6% for non-encapsulated quercetin compared to 11.9 ± 2.5% for the quercetin-loaded microparticles) and this photostabilization effect was maintained over time. Moreover, the chemical instability of quercetin, during 3-month storage of the formulations at room temperature and in the dark, was almost completely suppressed by the lipid microparticle system. Therefore incorporation of quercetin in lipoparticles represents an effective strategy to enhance its stability in dermatological products.

Incorporation of quercetin in lipid microparticles:Effect on photo- and chemical-stability

SCALIA, Santo;
2009

Abstract

Lipid microparticles loaded with the flavonoid, quercetin were developed in order to enhance its stability in topical formulations. The microparticles were produced using tristearin as the lipid material and phosphatidylcholine as the emulsifier. The obtained lipoparticles were characterized by release studies, scanning electron microscopy and powder X-ray diffractometry. The quercetin loading was 12.1% (w/w). Free or microencapsulated quercetin was introduced in a model cream formulation (oil-in-water emulsion) and irradiated with a solar simulator. The extent of photodegradation was measured by high-performance liquid chromatography. The light-induced decomposition of quercetin in the cream vehicle was markedly decreased by incorporation into the lipid microparticles (the extent of degradation was 23.1 ± 3.6% for non-encapsulated quercetin compared to 11.9 ± 2.5% for the quercetin-loaded microparticles) and this photostabilization effect was maintained over time. Moreover, the chemical instability of quercetin, during 3-month storage of the formulations at room temperature and in the dark, was almost completely suppressed by the lipid microparticle system. Therefore incorporation of quercetin in lipoparticles represents an effective strategy to enhance its stability in dermatological products.
2009
Scalia, Santo; M., Mezzena
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/534075
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 58
social impact