Zirconium oxide (ZO) has outstanding mechanical properties, high biocompatibility and high resistance to scratching. Since dental implants are made with ZO and the genetic effects of ZO on osteoblasts are incompletely understood, we used microRNA microarray techniques to investigate the translation process in osteoblasts exposed to ZO. By using miRNA microarrays containing 329 probes designed from Human miRNA sequences, we identified in osteoblast-like cells line (MG-63) cultured on ZO disks several miRNA whose expression was significantly modified. The most notable regulated genes acting on osteoblasts are: NOG, SHOX, IGF1, BMP1 and FGFR1. The data reported below represent the first study on translation regulation in osteoblasts exposed to zirconium and one in which the effect of ZO on bone formation has been detected.
Zirconium oxide regulates RNA interfering of osteoblast-like cells
ZOLLINO, Ilaria;CARINCI, Francesco
2008
Abstract
Zirconium oxide (ZO) has outstanding mechanical properties, high biocompatibility and high resistance to scratching. Since dental implants are made with ZO and the genetic effects of ZO on osteoblasts are incompletely understood, we used microRNA microarray techniques to investigate the translation process in osteoblasts exposed to ZO. By using miRNA microarrays containing 329 probes designed from Human miRNA sequences, we identified in osteoblast-like cells line (MG-63) cultured on ZO disks several miRNA whose expression was significantly modified. The most notable regulated genes acting on osteoblasts are: NOG, SHOX, IGF1, BMP1 and FGFR1. The data reported below represent the first study on translation regulation in osteoblasts exposed to zirconium and one in which the effect of ZO on bone formation has been detected.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.