Let $X$ be a projective variety of dimension $r$ over an algebraically closed field. It is proven that two birational embeddings of $X$ in $\P^n$, with $n\geq r+2$ are equivalent up to Cremona transformations of $\P^n$.
Equivalent birational embeddings
MELLA, Massimiliano;POLASTRI, Elena
2009
Abstract
Let $X$ be a projective variety of dimension $r$ over an algebraically closed field. It is proven that two birational embeddings of $X$ in $\P^n$, with $n\geq r+2$ are equivalent up to Cremona transformations of $\P^n$.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.