The European wild boar is an important game species, subjected to local extinctions and translocations in the past, and currently enormously and worryingly expanding in some areas where management is urgently required. Understanding the relative roles of ancient and recent events in shaping the genetic structure of this species is therefore not only an interesting scientific issue, but it represents also the basis for addressing future management strategies. In addition, several pig breeds descend from the European wild boar, but the geographical location of the domestication area(s) and the possible introgression of pig genomes into wild populations are still open questions. Here, we analysed the genetic variation in different wild boar populations in Europe. Ten polymorphic microsatellites were typed in 252 wild boars and the mtDNA control region was sequenced in a subset of 145 individuals. Some samples from different pig breeds were also analysed. Our results, which were obtained considering also 612 published mtDNA sequences, suggest that (i) most populations are similarly differentiated, but the major discontinuity is found along the Alps; (ii) except for the Italian populations, European wild boars show the signature of a postglacial demographic expansion; (iii) Italian populations seem to preserve a high proportion of preglaciation diversity; (iv) the demographic decline which occurred in some areas in the last few centuries did not produce a noticeable reduction of genetic variation; (v) signs of human-mediated gene flow among populations are weak, although in some regions the effects of translocations are detectable and a low degree of pig introgression can be identified; (vi) the hypothesis of an independent domestication centre in Italy is not supported by our data, which in turn confirm that Central European wild boar might have represented an important source for domestic breeds. We can therefore conclude that recent human activities had a limited effect on the wild boar genetic structure. It follows that areas with high variation and differentiation represent natural reservoirs of genetic diversity to be protected avoiding translocations. In this context controlling some populations by hunting is not expected to affect significantly genetic variation in this species.

Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable?

BERTORELLE, Giorgio
2008

Abstract

The European wild boar is an important game species, subjected to local extinctions and translocations in the past, and currently enormously and worryingly expanding in some areas where management is urgently required. Understanding the relative roles of ancient and recent events in shaping the genetic structure of this species is therefore not only an interesting scientific issue, but it represents also the basis for addressing future management strategies. In addition, several pig breeds descend from the European wild boar, but the geographical location of the domestication area(s) and the possible introgression of pig genomes into wild populations are still open questions. Here, we analysed the genetic variation in different wild boar populations in Europe. Ten polymorphic microsatellites were typed in 252 wild boars and the mtDNA control region was sequenced in a subset of 145 individuals. Some samples from different pig breeds were also analysed. Our results, which were obtained considering also 612 published mtDNA sequences, suggest that (i) most populations are similarly differentiated, but the major discontinuity is found along the Alps; (ii) except for the Italian populations, European wild boars show the signature of a postglacial demographic expansion; (iii) Italian populations seem to preserve a high proportion of preglaciation diversity; (iv) the demographic decline which occurred in some areas in the last few centuries did not produce a noticeable reduction of genetic variation; (v) signs of human-mediated gene flow among populations are weak, although in some regions the effects of translocations are detectable and a low degree of pig introgression can be identified; (vi) the hypothesis of an independent domestication centre in Italy is not supported by our data, which in turn confirm that Central European wild boar might have represented an important source for domestic breeds. We can therefore conclude that recent human activities had a limited effect on the wild boar genetic structure. It follows that areas with high variation and differentiation represent natural reservoirs of genetic diversity to be protected avoiding translocations. In this context controlling some populations by hunting is not expected to affect significantly genetic variation in this species.
2008
M., Scandura; Iacolina, L.; Crestanello, B.; E., Pecchioli; M. F., DI BENEDETTO; V., Russo; Davoli, R.; M., Apollonio; Bertorelle, Giorgio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/525624
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 128
  • ???jsp.display-item.citation.isi??? 127
social impact